حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

النهايات والاتصال

إيجاد النهايات بيانياً وعدديًا

أتحقق من فهمي صفحة (54):

أجد كلاً من النهايات الآتية بيانياً وعدديًا:

(a) begin mathsize 20px style lim for x not stretchy rightwards arrow 3 of fraction numerator x squared minus 9 over denominator x minus 3 end fraction end style

الحل بيانياً:

الحل عددياً:

(b) begin mathsize 20px style lim for x not stretchy rightwards arrow 0 of f left parenthesis x right parenthesis comma f left parenthesis x right parenthesis equals left curly bracket table attributes columnalign left left columnspacing 1em end attributes row x cell comma x less or equal than 0 end cell row 1 cell comma x greater than 0 end cell end table end style

الحل بيانياً:

الحل عددياً:

  


نهايات تتضمن (المالانهاية)

أتحقق من فهمي صفحة (56):

أجد كلاً من النهايات الآتية بيانياً:

(a) begin mathsize 20px style lim for x not stretchy rightwards arrow 2 of fraction numerator 1 over denominator x minus 2 end fraction end style

غير موجودة.

(b) begin mathsize 20px style lim for x not stretchy rightwards arrow negative 3 of fraction numerator 1 over denominator left parenthesis x plus 3 right parenthesis squared end fraction end style = infinity


إيجاد النهايات جبرياً

أتحقق من فهمي صفحة (58):

أستعمل خصائص النهايات لحساب كل نهاية مما يأتي:

(a) begin mathsize 20px style lim for x not stretchy rightwards arrow 1 of   open parentheses 2 x cubed plus 3 x squared minus 4 close parentheses end sty

begin mathsize 20px style table attributes columnalign right left columnspacing 0em 2em end attributes row cell lim for x not stretchy rightwards arrow 1 of left parenthesis 2 x cubed plus end cell cell lim for x not stretchy rightwards arrow 1 of 3 x squared space minus lim for x not stretchy rightwards arrow 1 of 4 right parenthesis end cell end table end style     

begin mathsize 20px style 2 left parenthesis lim for x not stretchy rightwards arrow 1 of x right parenthesis cubed plus 3 left parenthesis lim for x not stretchy rightwards arrow 1 of x right parenthesis squared minus space 4 end style      

begin mathsize 20px style 2 left parenthesis 1 right parenthesis cubed plus 3 left parenthesis 1 right parenthesis squared minus 4 equals 1 end style      

(b) begin mathsize 20px style lim for x not stretchy rightwards arrow 4 of   fraction numerator square root of 1 plus 3 x squared end root over denominator 3 x minus 2 end fraction end sty

begin mathsize 20px style fraction numerator stack l i m with x rightwards arrow 4 below square root of 1 space plus space left parenthesis 3 x right parenthesis squared end root over denominator stack l i m with x rightwards arrow 4 below 3 left parenthesis x right parenthesis space minus space 2 end fraction end style = begin mathsize 20px style table attributes columnalign right left columnspacing 0em 2em end attributes row cell lim for x not stretchy rightwards arrow 4 of fraction numerator square root of 1 space plus space 3 x squared end root over denominator 3 x space minus space 2 end fraction end cell blank end table end style

 begin mathsize 20px style fraction numerator square root of 1 space plus space 3 left parenthesis 4 right parenthesis squared end root over denominator 3 left parenthesis 4 right parenthesis space minus space 2 end fraction end style = begin mathsize 20px style fraction numerator square root of stack l i m with x rightwards arrow 4 below 1 space plus space 3 left parenthesis stack l i m space x with x rightwards arrow 4 below end root right parenthesis squared over denominator 3 stack l i m with x rightwards arrow 4 below x space minus stack l i m space 2 with x rightwards arrow 4 below end fraction end style

 begin mathsize 20px style 7 over 10 end style = begin mathsize 20px style fraction numerator square root of 49 over denominator 10 end fraction end style

 

أتحقق من فهمي صفحة (59):

أجد كل نهاية ممّا يأتي باستعمال التعويض المباشر إذا كان ممكناً، وإلا فأذكر السبب:

(a) begin mathsize 20px style lim for x not stretchy rightwards arrow 2 of left parenthesis 3 x squared minus 5 x plus 4 right parenthesis end style

= 3(2)2 – 5(2) + 4 = 6

(b) begin mathsize 20px style lim for x not stretchy rightwards arrow negative 1 of square root of 1 minus 4 x squared end root end style

العدد (1) لا يقع ضمن مجال الاقتران فلذلك لا يمكن إيجاد النهاية بالتعويض المباشر.

(c) begin mathsize 20px style lim for x not stretchy rightwards arrow 3 of fraction numerator x cubed minus 5 x minus 6 over denominator x squared minus 2 end fraction end style

begin mathsize 20px style fraction numerator 3 cubed space minus space 5 left parenthesis 3 right parenthesis space minus space 6 over denominator 3 squared space minus space 2 end fraction end style = begin mathsize 20px style 6 over 7 end style

(d) begin mathsize 20px style lim for x not stretchy rightwards arrow 4 of fraction numerator x squared minus 16 over denominator x minus 4 end fraction end style

begin mathsize 20px style lim for x not stretchy rightwards arrow 4 of fraction numerator left parenthesis x space minus space 4 right parenthesis left parenthesis x space plus space 4 right parenthesis over denominator x minus 4 end fraction end style = begin mathsize 20px style lim for x not stretchy rightwards arrow 4 of space left parenthesis x space plus space 4 right parenthesis end style = 8

غير موجودة.

 

أتحقق من فهمي صفحة (61):

أجد كلّ نهاية ممّا يأتي:

(a) begin mathsize 20px style lim for x not stretchy rightwards arrow 0 of fraction numerator 7 x minus x squared over denominator x end fraction end style

 = begin mathsize 20px style lim for x not stretchy rightwards arrow 0 of fraction numerator x left parenthesis 7 space minus space x right parenthesis over denominator x end fraction end style begin mathsize 20px style stack l i m space left parenthesis 7 space minus space with x rightwards arrow 0 below x right parenthesis end style = 7

(b) begin mathsize 20px style lim for x not stretchy rightwards arrow 0 of fraction numerator 2 minus square root of x plus 4 end root over denominator x end fraction end style

 = begin mathsize 20px style lim for x not stretchy rightwards arrow 0 of fraction numerator 2 minus square root of x plus 4 end root over denominator x end fraction end style x fraction numerator 2 space plus space square root of x space plus space 4 end root over denominator 2 space plus space square root of x space plus space 4 end root end fraction

begin mathsize 20px style lim for x not stretchy rightwards arrow 0 of fraction numerator negative x over denominator x left parenthesis 2 space plus space square root of x space plus space 4 end root right parenthesis end fraction end style = begin mathsize 20px style lim for x not stretchy rightwards arrow 0 of fraction numerator negative 1 over denominator 2 space plus space square root of x space plus space 4 end root end fraction end style = begin mathsize 20px style fraction numerator negative 1 over denominator 4 end fraction end stylebegin mathsize 20px style lim for x not stretchy rightwards arrow 0 of fraction numerator 4 minus space left parenthesis x space plus space 4 right parenthesis over denominator x left parenthesis 2 space plus space square root of x space plus space 4 end root right parenthesis end fraction end style = 

(c) begin mathsize 20px style lim for x not stretchy rightwards arrow 5 of fraction numerator vertical line x minus 5 vertical line over denominator x minus 5 end fraction end style

begin mathsize 20px style lim for x not stretchy rightwards arrow 5 plus of fraction numerator x space minus space 5 over denominator x minus 5 end fraction end style = 1

begin mathsize 20px style lim for x not stretchy rightwards arrow 5 minus of fraction numerator 5 space minus space x over denominator x minus 5 end fraction end style = -1

begin mathsize 20px style lim for x not stretchy rightwards arrow 5 of fraction numerator open vertical bar x space minus space 5 close vertical bar over denominator open vertical bar x minus 5 close vertical bar end fraction end style 


الاتصال

أتحقق من فهمي صفحة (64):

أحدّد إذا كان كلّ اقتران ممّا يأتي متصلاً عند قيمة x المعطاة، مبرراً إجابتي:

(a) begin mathsize 20px style f left parenthesis x right parenthesis equals x to the power of 5 plus 2 x cubed minus x comma space x equals 1 end style

الاقتران متصل عند x = 1 ؛ لأن begin mathsize 20px style f left parenthesis 1 right parenthesis space equals stack l i m with x leftwards arrow 1 below space f left parenthesis x right parenthesis space equals space 6 end style

(b) begin mathsize 20px style g left parenthesis x right parenthesis equals fraction numerator x squared plus 16 over denominator x minus 5 end fraction comma space x equals 5 end style

الاقتران غير متصل عند x = 5 ؛ لأن الاقتران غير معرف عند x = 5

(c) begin mathsize 20px style h left parenthesis x right parenthesis equals left curly bracket table attributes columnalign left left columnspacing 1em end attributes row cell x minus 1 end cell cell comma x less than 3 end cell row cell 5 minus x end cell cell comma x greater or equal than 3 end cell end table comma space x equals 3 end style

h(3) = 5 – 3 = 3

begin mathsize 20px style stack l i m with x rightwards arrow 3 plus below h left parenthesis x right parenthesis space equals space 2 end style

begin mathsize 20px style stack l i m with x rightwards arrow 3 minus below h left parenthesis x right parenthesis space equals space 2 end style

begin mathsize 20px style stack l i m with x rightwards arrow 3 below h left parenthesis x right parenthesis space equals space 2 end style

h(3) =begin mathsize 20px style stack l i m with x rightwards arrow 3 below h left parenthesis x right parenthesis space equals space 2 end style= 2

إذن الاقتران متصل عند x = 3

(d) begin mathsize 20px style p left parenthesis x right parenthesis equals left curly bracket table attributes columnalign left left columnspacing 1em end attributes row cell fraction numerator x squared minus 25 over denominator x minus 5 end fraction end cell cell comma x not equal to 5 end cell row 10 cell comma x equals 5 end cell end table comma space x equals 5 end style

p(5) = 10

begin mathsize 20px style stack l i m space p with x rightwards arrow 5 below left parenthesis x right parenthesis space equals space limit as x rightwards arrow 5 of fraction numerator x squared space minus space 25 over denominator x space minus 5 end fraction end style

             begin mathsize 20px style space equals space limit as x rightwards arrow 5 of fraction numerator left parenthesis x space minus space 5 right parenthesis left parenthesis x space plus space 5 right parenthesis over denominator x space minus 5 end fraction end style

              = begin mathsize 20px style stack l i m with x rightwards arrow 5 below space left parenthesis x space plus space 5 right parenthesis space equals space 10 end style

 p(5) = begin mathsize 20px style stack l i m with x rightwards arrow 5 below space p left parenthesis x right parenthesis space equals space 10 end style

إذن الاقتران متصل عند x = 5 

إعداد : شبكة منهاجي التعليمية

11 / 09 / 2024

النقاشات