حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  مهارات التفكير العليا

مهارات التفكير العليا

مشتقتا الضرب والقسمة والمشتقات العليا

تبرير: إذا كان: begin mathsize 20px style y equals fraction numerator 1 minus e to the power of negative x end exponent over denominator 1 plus e to the power of negative x end exponent end fraction end style ، فأجيب عن السؤالين الآتيين تباعاً:

(34) أجد ميل المماس عند نقطة الأصل.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y equals fraction numerator 1 minus e to the power of negative x end exponent over denominator 1 plus e to the power of negative x end exponent end fraction equals fraction numerator 1 minus 1 over e to the power of x over denominator 1 plus 1 over e to the power of x end fraction end cell row blank cell equals fraction numerator e to the power of x minus 1 over denominator e to the power of x plus 1 end fraction end cell row blank cell fraction numerator d y over denominator d x end fraction equals fraction numerator left parenthesis e to the power of x plus 1 right parenthesis left parenthesis e to the power of x right parenthesis minus left parenthesis e to the power of x minus 1 right parenthesis left parenthesis e to the power of x right parenthesis over denominator left parenthesis e to the power of x plus 1 right parenthesis squared end fraction equals fraction numerator 2 e to the power of x over denominator left parenthesis e to the power of x plus 1 right parenthesis squared end fraction end cell row blank cell fraction numerator d y over denominator d x end fraction vertical line subscript x equals 0 end subscript equals fraction numerator 2 left parenthesis 1 right parenthesis over denominator left parenthesis 1 plus 1 right parenthesis squared end fraction equals 1 half end cell end table end style

(35) أبيّن عدم وجود مماس أفقي للاقتران y مبرراً إجابتي.

إذا وجد مماس أفقي ميله يساوي صفراً، أي أنّ: begin mathsize 20px style fraction numerator 2 e to the power of x over denominator left parenthesis e to the power of x plus 1 right parenthesis squared end fraction equals 0 end style ، وهذا لا يتحقق إلا إذا كان ex = 0 ، ولكن ex > 0 لجميع الأعداد الحقيقية x ، ولذا لا يوجد لهذا المنحنى مماسات أفقية.

 

تحدّ: إذا كان: begin mathsize 20px style y equals fraction numerator x plus 1 over denominator x minus 1 end fraction end style ، حيث: begin mathsize 20px style x not equal to 1 end style فأجيب عن الأسئلة الثلاثة الآتية تباعاً:

(36) أجد begin mathsize 20px style fraction numerator d x over denominator d y end fraction end style .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y equals fraction numerator x plus 1 over denominator x minus 1 end fraction end cell row blank cell fraction numerator d y over denominator d x end fraction equals fraction numerator left parenthesis x minus 1 right parenthesis left parenthesis 1 right parenthesis minus left parenthesis x plus 1 right parenthesis left parenthesis 1 right parenthesis over denominator left parenthesis x minus 1 right parenthesis squared end fraction equals fraction numerator negative 2 over denominator left parenthesis x minus 1 right parenthesis squared end fraction end cell end table end style

(37) أعيد كتابة المعادلة بالنسبة إلى المتغير x  (x اقتران بالنسبة إلى y)، ثم أجد begin mathsize 20px style fraction numerator d x over denominator d y end fraction end style .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell y equals fraction numerator x plus 1 over denominator x minus 1 end fraction not stretchy rightwards arrow x plus 1 equals y left parenthesis x minus 1 right parenthesis not stretchy rightwards arrow x left parenthesis 1 minus y right parenthesis equals negative y minus 1 end cell row blank cell x equals fraction numerator y plus 1 over denominator y minus 1 end fraction end cell row blank cell fraction numerator d x over denominator d y end fraction equals fraction numerator negative 2 over denominator left parenthesis y minus 1 right parenthesis squared end fraction end cell end table end style

(38) أبيّن أنّ begin mathsize 20px style fraction numerator d x over denominator d y end fraction equals fraction numerator 1 over denominator fraction numerator d y over denominator d x end fraction end fraction end style 

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell fraction numerator d x over denominator d y end fraction end cell cell equals fraction numerator negative 2 over denominator left parenthesis y minus 1 right parenthesis squared end fraction end cell row blank cell equals fraction numerator negative 2 over denominator left parenthesis fraction numerator x plus 1 over denominator x minus 1 end fraction minus 1 right parenthesis squared end fraction end cell row blank cell equals fraction numerator negative 2 over denominator left parenthesis fraction numerator 2 over denominator x minus 1 end fraction right parenthesis squared end fraction equals fraction numerator negative 2 over denominator fraction numerator 4 over denominator left parenthesis x minus 1 right parenthesis squared end fraction end fraction equals fraction numerator left parenthesis x minus 1 right parenthesis squared over denominator negative 2 end fraction equals fraction numerator 1 over denominator fraction numerator d y over denominator d x end fraction end fraction end cell end table end style

 

تبرير: إذا كان begin mathsize 20px style f left parenthesis x right parenthesis equals fraction numerator ln invisible function application x over denominator x squared end fraction end style ، فأجيب عن السؤالين الآتيين تباعاً:

(39) أثبت أنّ begin mathsize 20px style f to the power of ′′ left parenthesis x right parenthesis equals fraction numerator 6 ln invisible function application x minus 5 over denominator x to the power of 4 end fraction end s ، مبرراً إجابتي.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals fraction numerator l n invisible function application x over denominator x squared end fraction end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals fraction numerator x squared left parenthesis 1 over x right parenthesis minus left parenthesis l n invisible function application x right parenthesis left parenthesis 2 x right parenthesis over denominator x to the power of 4 end fraction equals fraction numerator 1 minus 2 l n invisible function application x over denominator x cubed end fraction end cell row cell f to the power of ′′ left parenthesis x right parenthesis end cell cell equals fraction numerator x cubed left parenthesis negative 2 over x right parenthesis minus left parenthesis 1 minus 2 l n invisible function application x right parenthesis left parenthesis 3 x squared right parenthesis over denominator x to the power of 6 end fraction end cell row blank cell equals fraction numerator negative 5 x squared plus 6 x squared l n invisible function application x over denominator x to the power of 6 end fraction end cell row blank cell equals fraction numerator negative 5 plus 6 l n invisible function application x over denominator x to the power of 4 end fraction end cell end table end s

(40) أجد قيمة المقدار: begin mathsize 20px style x to the power of 4 f to the power of ′′ left parenthesis x right parenthesis plus 4 x cubed f to the power of straight prime left parenthesis x right parenthesis plus 2 x squared f left parenthesis x right parenthesis plus 1 end s .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell x to the power of 4 f to the power of ′′ left parenthesis x right parenthesis plus 4 x cubed f to the power of straight prime left parenthesis x right parenthesis plus 2 x squared f left parenthesis x right parenthesis plus 1 end cell row blank cell equals x to the power of 4 cross times fraction numerator negative 5 plus 6 l n invisible function application x over denominator x to the power of 4 end fraction plus 4 x cubed cross times fraction numerator 1 minus 2 l n invisible function application x over denominator x cubed end fraction plus 2 x squared cross times fraction numerator l n invisible function application x over denominator x squared end fraction plus 1 end cell row blank cell equals negative 5 plus 6 l n invisible function application x plus 4 minus 8 l n invisible function application x plus 2 l n invisible function application x plus 1 equals 0 end cell end table end s

إعداد : شبكة منهاجي التعليمية

21 / 10 / 2022

النقاشات