حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

قاعدة السلسلة

قاعدة السلسلة

أتحقق من فهمي صفحة (56)

أجد مشتقة كل اقتران ممّا يأتي:

(a) y = (x2 – 2)4

u = x2 – 2

y = u4

begin mathsize 20px style fraction numerator d u over denominator d x end fraction end style = 2x

begin mathsize 20px style fraction numerator d y over denominator d u end fraction end style = 4u3

begin mathsize 20px style fraction numerator d y over denominator d x end fraction end stylebegin mathsize 20px style fraction numerator d y over denominator d u end fraction end style x begin mathsize 20px style fraction numerator d u over denominator d x end fraction end style

  = 4u3 x 2

  = 8xu3

  = 8x (x2 – 2)3

(b) y = begin mathsize 20px style square root of x cubed space plus space 4 x space end root end style

y = begin mathsize 20px style left parenthesis x cubed space plus space 4 x right parenthesis to the power of 1 half end exponent end style

u = x3 + 4x

y = begin mathsize 20px style u to the power of 1 half end exponent end style

begin mathsize 20px style fraction numerator d u over denominator d x end fraction end style = 3x2 + 4

begin mathsize 20px style fraction numerator d y over denominator d u end fraction end style = begin mathsize 20px style 1 half end stylebegin mathsize 20px style u to the power of negative 1 half end exponent end style

begin mathsize 20px style fraction numerator d y over denominator d x end fraction end stylebegin mathsize 20px style fraction numerator d y over denominator d u end fraction end style x begin mathsize 20px style fraction numerator d u over denominator d x end fraction end style

  = begin mathsize 20px style 1 half end stylebegin mathsize 20px style u to the power of negative 1 half end exponent end style x (3x2 + 4)

  = begin mathsize 20px style fraction numerator 3 x squared space plus space 4 over denominator 2 square root of x cubed space end root plus space 4 x end fraction end style

 

قاعدة سلسلة القوة

أتحقق من فهمي صفحة (58)

أجد مشتقة كل اقتران ممّا يأتي عند قيمة x المعطاة:

(a) f(x) = (x4 + 1)5 , x = 1

f(x) = 5 (x4 + 1)4 (4x3)

         = 20x3 (x4 + 1)4

f(1) = 20 (1)3 ((1)4 + 1)4 = 20 x 16 = 320

(b) f(x) = begin mathsize 20px style square root of x squared space plus space 3 x space plus space 2 space end root end style , x = 2

f(x) = begin mathsize 20px style left parenthesis x squared space plus space 3 x space plus space 2 right parenthesis to the power of 1 half end exponent end style

f(x) = begin mathsize 20px style 1 half end style begin mathsize 20px style left parenthesis x squared space plus space 3 x space plus space 2 right parenthesis to the power of negative 1 half end exponent end style (2x + 3)

f(x) = begin mathsize 20px style 1 half end style (2x + 3) begin mathsize 20px style left parenthesis x squared space plus space 3 x space plus space 2 right parenthesis to the power of negative 1 half end exponent end style

         = begin mathsize 20px style fraction numerator 2 x space plus space 3 over denominator 2 square root of x squared space plus space 3 x space plus space 2 end root end fraction end style

f(2) = begin mathsize 20px style fraction numerator 2 left parenthesis 2 right parenthesis space plus space 3 over denominator 2 square root of 2 squared space plus space 3 space straight x space 2 space plus space 2 end root end fraction end style = begin mathsize 20px style fraction numerator 7 over denominator 2 square root of 12 end fraction end style

(c) f(x) = begin mathsize 20px style fourth root of left parenthesis 2 x squared space minus space 7 right parenthesis to the power of 5 end root end style , x = 4

f(x) = begin mathsize 20px style fourth root of left parenthesis 2 x squared space minus space 7 right parenthesis to the power of 5 end root end style = begin mathsize 20px style left parenthesis 2 x squared space minus space 7 right parenthesis to the power of 5 over 4 end exponent end style

f(x) = begin mathsize 20px style 5 over 4 end style begin mathsize 20px style left parenthesis 2 x squared space minus space 7 right parenthesis to the power of 1 fourth end exponent end style (4x)

        = begin mathsize 20px style 5 over 4 end style (4x) begin mathsize 20px style left parenthesis 2 x squared space minus space 7 right parenthesis to the power of 1 fourth end exponent end style

        = 5x x begin mathsize 20px style fourth root of left parenthesis 2 x squared space minus space 7 right parenthesis end root end style

f(4) = 5 x 4 x begin mathsize 20px style fourth root of left parenthesis 2 left parenthesis 4 right parenthesis squared space minus space 7 right parenthesis end root end style = 20 begin mathsize 20px style fourth root of 25 end style

 

قواعد الاشتقاق الأساسية، وقاعدة السلسلة

أتحقق من فهمي صفحة (59)

أجد مشتقة كل اقتران ممّا يأتي:

(a) f(x) = (1 + x3)4 + x8 + 2

f(x) = 4 (1 + x3)3 (3x2) + 8x7

         = 12x2 (1 + x3)3 + 8x7

(b) f(x) = begin mathsize 20px style cube root of 2 x space minus space 1 end root end style - (x - 3)3

f(x) = begin mathsize 20px style left parenthesis 2 x space minus space 1 right parenthesis to the power of 1 third end exponent end style – (x – 3)3

f(x) = begin mathsize 20px style 1 third end style begin mathsize 20px style left parenthesis 2 x space minus space 1 right parenthesis to the power of negative 1 third end exponent end style (2) – 3(x – 3)2 (1)

    = begin mathsize 20px style fraction numerator 2 over denominator 3 space cube root of left parenthesis 2 x space minus space 1 right parenthesis squared end root end fraction end style -3(x – 3)2

 

معدل التغير

أتحقق من فهمي صفحة (61)

صناعة: يُمثل الاقتران: P(t) = begin mathsize 20px style square root of 10 t squared space plus space t space plus space 229 end root end style إجمالي الأرباح السنوية لإحدى الشركات الصناعية (بآلاف الدنانير)، حيث t عدد السنوات بعد عام  2015م.

(a) أجد معدل تغيّر إجمالي الأرباح السنوي للشركة بالنسبة إلى الزمن t .

P (t) = begin mathsize 20px style fraction numerator 20 t space plus space 1 over denominator 2 square root of 10 t squared space plus space t space plus space 229 end root end fraction end style

(b) أجد معدل تغيّر إجمالي الأرباح السنوي للشركة عام  2020م، مفسراً معنى الناتج.

t = 2020 – 2015 = 5

P (5) = begin mathsize 20px style fraction numerator 101 over denominator 2 square root of 250 space plus space 5 space plus space 229 end root end fraction end style = begin mathsize 20px style fraction numerator 101 over denominator 2 square root of 484 end fraction end style begin mathsize 20px style fraction numerator 101 over denominator 2 space straight x space 22 end fraction end stylebegin mathsize 20px style 101 over 44 end style ≈ 2.3

إذن في سنة 2020 يزداد إجمالي الأرباح بمعدل 2300 دينار لكل سنة.

 

قاعدة السلسلة والمتغير الوسيط

أتحقق من فهمي صفحة (62)

إذا كان: y = u5 + u3 ، حيث: u = 3 – 4x ، فأوجد begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style عندما x = 2 .

begin mathsize 20px style fraction numerator d y over denominator d x end fraction end style = 5u4 + 3u2

begin mathsize 20px style fraction numerator d u over denominator d x end fraction end style = -4

begin mathsize 20px style fraction numerator d y over denominator d x end fraction end stylebegin mathsize 20px style fraction numerator d y over denominator d u end fraction end style x begin mathsize 20px style fraction numerator d u over denominator d x end fraction end style

       = (5u4 + 3u2) x -4

       = -4(5(3 – 4x)4 + 3(3 – 4x)2)

       = -20 (3 – 4x)4 – 12 (3 – 4x)2

   begin mathsize 20px style right enclose fraction numerator d y over denominator d x end fraction end enclose subscript space x space equals space 2 end subscript end style = -20 (625) – 12 (25) = -12800

إعداد : شبكة منهاجي التعليمية

19 / 10 / 2022

النقاشات