

إجابات الأسئلة الإضافية

السؤال الأول:

ضع دائرة حول رمز الإجابة الصحيحة في الفقرات الآتية:

1. قوى ثنائية القطب تربط بين:

ب- الجزيئات القطبية.

2. المركب الذي تترابط جزيئاته بأعلى قوى تجاذب هو: $C_4 H_{10}$

3. المركب الذي تتماسك جزيئاته بقوى لندن فقط هو: +CCl₄

4. إحدى المواد التالية ترتبط جزيئاتها بشكل رئيس بقوى لندن وهي: CO_2

الترابط طوی الترابط HCl , H_2O , CH_4 , HF .5 بین جزیئاتها فی الحالة السائلة هو:

د- $CH_4 < HCI < HBr < H_2O$ د-

6. المادة التي تترابط وحداتها البنائية الأساسية في الحالة السائلة بقوى لندن فقط هي:

Ar 🥂

1/4

7. أحد المواد الآتية ترتبط ذراتها بقوى لندن وهي:

-Neج

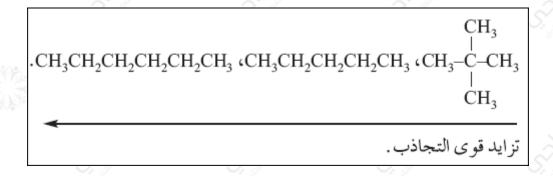
8. المادة (في الحالة السائلة) التي ترتبط جزيئاتها بأضعف قوى ترابط هي: -CH₃CH₂CH₂CH₃

السؤال الثاني:

ط دقائقها ذب ثنائیات	مواد ترتب ^ی بقوی تجا القطب	مواد ترتبط دقائقها بقو _ة تجاذب هيدروجيني	مواد ترتبط دقائقها بقوی لندن فقط
	HCI	HF	CH ₄
	H_2S	CH ₃ CH ₂ NH ₂	Kr
	OF_2	CH ₃ CH ₂ CH ₂ CH ₂ OH	Br ₂
	CH₃F		N_2
	ICI		CH ₃ CH ₂ CH ₃
	NO		SiCl ₄
	HBr		O_2

السؤال الثالث:

المركب يمتلك درجة غليان أعلى من $CH_3CH_2CH_2OH$ لأنه يكوّن $CH_3CH_2CH_2OH$ لأنه يكوّن ترابطاً هيدروجينياً من طرفين (عدد الترابط الهيدروجيني أكبر).


السؤال الرابع:

المركب أعلى من درجة غليان المركب أعلى من درجة غليان المركب $CH_3CH_2CH_2CH_2NH_2$ وكلاهما تترابط جزيئاته بروابط هيدروجينية إلا أن الكتلة المولية للمركب الأول أعلى من الثاني.

منهاجي

السؤال الخامس:

السؤال السادس:

نوع قوى التجاذب الرئيسة:

قوی لندن	قوى ثنائية القطب	ترابط هيدروجيني
C_8H_{18}		
Ar	NO	C_2H_5OH
O_2	H_2S	$C_3H_7NH_2$
I_2		

السؤال السابع:

فسر:

B-Fأ- الرابطة قطبية، والجزيء BF₃ غير قطبي:

B-Fالرابطة قطبية لأن الفرق في الكهرسلبية بين الذرتين لا يساوي صفر، أما الجزيء BF3 فهو غير قطبي لأن محصلة قوى قطبية الروابط تساوي صفر.

 $HOCH_2CH_2OH$ ب- درجـة غليـان المركـب أعلـى مـن درجـة غليـان المركـب CH_3CH_2OH بالرغم من تقارب كتلتيهما المولية:

كلا الجزيئين يترابطان بروابط هيدروجينية، إلا أن عدد الروابط الهيدروجينية التي يكونها المركب الأول أكبر من الثاني لوجود مجموعتي هيدروكسيل فيه.

3/4

CH₃Fج- الروابط بين جزيئات ليست روابط هيدروجينية:

لعدم وجود ارتباط مباشر بين ذرة الهيدروجين وذرة الفلور.

السؤال الثامن:

ترتيب الجزيئات تبعاً لزيادة درجة غليانها:

CH₃CH₂CH₂CH₂NH₂ > CH₃CH₂CH₂NH₂ > CH₃CH₂CH₂CH₃ > CH₃CHCH

السؤال التاسع:

سؤال الشكل:

أ- تزداد درجة الغليان بزيادة الكتلة المولية.

ب- فسّر:

1. ارتفاع درجة غليان الماء مقارنة بمركبات عناصر المجموعة السادسة:

لوجود ترابط هيدروجيني قوي بين جزيئات الماء، بينما تترابط مركبات عناصر المجموعة السادسة بقوى ثنائية القطب الأضعف من الترابط الهيدروجيني.

- 2. HFارتفاع درجة غليان المركب مقارنة بمركبات عناصر المجموعة السابعة:
- 3. HFلوجود ترابط هيدروجيني قوي بين جزيئات ، بينما تترابط مركبات عناصر المجموعة السابعة بقوى ثنائية القطب الأضعف من الترابط الهيدروجيني.
 - 4. CH₄ نقصان درجة غليان المركب مقارنة بعناصر المجموعة الرابعة:

تترابط عناصر المجموعة الرابعة بقوى لندن الضعيفة، وأضعف قوى لندن +CHتكون بين جزيئات لأن كتلته المولية منخفضة.

منهاجي