

مراجعة الدرس الرابع

1- الفكرة الرئيسة: أوضح مكونات المحلول المنظم الحمضي.

2- أوضح المقصود بكل ممّا يأتي:

⊙التميه.

⊙الأيون المشترك.

3- أحدد مصدر الأيونات لكلّ من الأملاح الآتية:

KNO₃, CH₃NH₃Br, C₆H₅COONa, LiF

4- أحدد بين الأملاح الآتية، الملح الذي يعد ذوبانه في الماء تميهاً:

KCN, LiBr, C₅H₅NHI, HCOONa, NaClO₄

5- أصنف محاليل الأملاح الآتية إلى حمضية وقاعدية ومتعادلة:

KNO₂, NH₄NO₃, LiCl, NaHCO₃, C₆H₅NH₃Br

محلول pH أوضح أثر إضافة كمية قليلة من بلورات الملح الصلب NaHS في قيمة pH لمحلول الحمض H_2S .

7- أحسب كتلة الملح KNO_2 اللازم إضافتها إلى ML من محلول KNO_2 تركيزه PH للمحلول 3.52 .

.(85 g/mol) الكتلة المولية للملح ، ${
m K_a} = 4.5 \times 10^{-4}$, ${
m log} \ 3 = 0.48$

1/2

- القاعدة $K_{\rm b}=1.8 \ {\rm x} \ 10^{-5}$ علماً أن 10^{-5} NH وملحها 10^{-5} 10^{-5}
- 9- أ<mark>حسب</mark> الرقم الهيدروجيني لمحلول مكون من الحمض HClO والملح NaOCl بالتركيز نفسه.

 $K_{\scriptscriptstyle b} = 3.5 \ x \ 10^{\mbox{--}8}$, log 3.5 = 0.45 علماً أن

والملح ، $0.2~{
m M}$ محلول منظم حجمه $0.5~{
m L}$ مكون من ${
m C_2H_5NH_2}$ تركيزها $0.34~{
m C_2H_5NH_3Cl}$ محلول منظم حجمه $0.34~{
m C_2H_5NH_3Cl}$

أ- أحسب الرقم الهيدروجيني للمحلول.

ب- <mark>أحسب</mark> الرقم الهيدروجيني للمحلول، فيما لو أضيف إليه 0.05 mol من الحمض HCl .

ج- <mark>أحسب</mark> الرقم الهيدروجيني للمحلول، فيما لو أضيف إليه 0.05 mol من القاعدة . NaOH .

2/2