

إجابات تمارين ومسائل الدرس

القطع المكافىء - إجابات دليل المعلم

١) جد معادلة القطع المكافئ في كل حالة مما يأتي، ثم ارسم منحناه بشكل تقريبي:

أ) رأسه النقطة (-١،٠) وبؤرته النقطة (-٥،٠)

ص = - ۲ (س + ۱)

ب) رأسه النقطة (١٠،٠) وبؤرته النقطة (٣،٠)

(1 + m) ۱ 7 = 7

جـ) رأسه النقطة (٢، ٣) وبؤرته النقطة (٢، ٨)

 $(m-7)^7 = 7$ (m-7)

د) رأسه النقطة (٢ ، ٣) و بؤرته النقطة (٢ ، -٢)

 $(m-T)^{7}=-7$

w=- هـ) بورته النقطة (۱،۰) و معادلة دليله ص

 $(m-1)^7 = 7(m+\frac{m}{7})$

و) بوار ته النقطة (\cdot,\cdot) ومعادلة دليله = 0

orderightarrow - orde

() بوأرته النقطة () ، (،) ومعادلة دليله س

$$(\frac{1770}{1\cdots} - w)^{\frac{r}{r}} = {}^{r}(o + w)$$

- رأسه النقطة (7، -%) ومعادلة دليله س

 $(T-m)^{\gamma}=\gamma(T-m)$

ط) رأسه النقطة (-1, 7) و معادلة دليله ص = ٥

$$(\gamma - \gamma)^{\gamma} = -\gamma(\gamma - \gamma)$$

1/3 منهاجي

٢) جد كلًا من إحداثيي الرأس، وإحداثيي البؤرة، ومعادلة الدليل، ومعادلة المحور، لكلً من القطوع المكافئة المعطاة معادلتها في كلً مما يأتي:

$$(1 + \omega) = (-\omega - \gamma)^{\gamma} = \gamma ((\omega + 1))$$

$$\Upsilon - \omega = \Upsilon(0 + \omega)$$
 (ب

.
$$12 = m17 - m17 - 707$$
 c

$$\Lambda = \chi - \chi = \chi - \chi = \chi + \chi = \chi$$
 هـ) η

$$\theta = 17 + 900 + 700 = 0$$

منهاجي 🕻	XXX
----------	-----

معادلة المحور	معادلة الدليل	إحداثيا البؤرة	إحداثيا الرأس	فرع
ص = ٣	س = - ع	(7,7)	(-1,7)	f
س = -ه	ص = خ	$(\frac{9}{\xi}, 0-)$	(7,0-)	ب
ص = ،	س = - غ	(· '\frac{1}{\xi})	(• (•)	۶.
ص = ٣	س = - ٤	(٣ (٠)	(-7,7)	٦
س = ،	$\frac{\Lambda}{\Psi} - = 0$	$(\frac{\xi}{\tau} - \cdot, \cdot)$	(٢ - ٢٠)	-8a
$\frac{\Psi}{Y} = 0$	$\omega = \frac{-137}{43}$	$(\frac{r}{r}, \frac{r \cdot q}{\xi \lambda})$	$(-\frac{\circ \vee}{7}, \frac{\forall}{7})$	و

 Υ) جد معادلة القطع المكافئ الذي معادلة محوره Υ 0 ومعادلة دليله Υ 0 وتبعد بؤرته Λ 0 وحدات عن دليله، ومفتوح نحو الأسفل.

$$(1-\omega) \quad 17 = -7 \quad (\omega - 1)$$

2/3

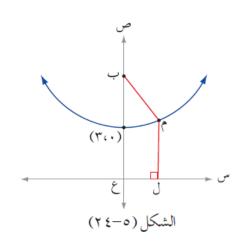
٤) جد معادلة القطع المكافئ الذي يمر بالنقطتين (٨ ، ٦) ، (٤ ، - ٢)، ومحور تماثله المستقيم الذي معادلته س = ۲. منهاجي 💥

$$(m-7)^7=3$$
 (ص $^+$ ۳)

٥) جد معادلة القطع المكافئ الذي محوره يوازي محور الصادات، وبؤرته النقطة (٢،١) ويمر بالنقطة (٥ ، -١) ويقع رأسه أسفل بؤرته. منهاجي 💥

$$(7 + m) = 7 + (1 - m)$$

٦) جد معادلة القطع المكافئ المذي محموره يموازي محمور السينات، ويمرمنحناه بالنقط (7,,),(0,7),(7,-3).


$$\Upsilon + \omega + \frac{1}{2} \omega + \gamma = 0$$

٧) في الشكل (٥-٤) قطع مكافئ رأسه النقطة (٠، ٣) وبؤرته النقطة ب ودليله محور السينات، والنقطة م $(7, \frac{1}{m})$ تقع على منحناه. جد محيط الشكل الرباعي ل م ب ع.

وحدة طول
$$\frac{22}{m}$$

٨) قوس على شكل قطع مكافئ تقع قاعدته على أرض مستوية، طولها ١٢مترًا، ورأس القوس يرتفع ٩ أمتار فوق سطح الأرض. اكتب المعادلة الممثلة لهذا القوس، علمًا أنَّه متماثل حول محور الصادات.

$$(9-9)\xi = -\xi$$

3/3 منهاجي