

حسابات الحموض الضعيفة

في الحموض الضعيفة يكون تأين الحمض جزئياً، وعليه يمكن حساب [+H₃O] عن طريق ثابت الاتزان لتأين الحمض الضعيف في الماء.

ثابت الاتزان

$$\frac{[H_3O^+] [A^-]}{[HA] [H_2O]} = K_C$$

وبما أن $[H_2O]$ ثابتاً في المحاليل المائية، لذا يمكن دمجه مع ثابت الاتزان في ثابت جديد K_a

$$\frac{[H_3O^+] [A^-]}{[HA]} = K_a$$

. ثابت تأين الحمض الضعيف، ويتغير من حمض ضعيف لآخر: K_{a}

وللتسهيل تهمل قيمة (س) المتفككة من الحمض HA ، ويصبح [HA] عند الاتزان = ص

وبما أن $[H_3O^+] = [A^-] = m$ عند الاتزان فإن العلاقة السابقة تصبح:

$$\frac{\mathsf{w} \times \mathsf{w}}{\mathsf{w}} = \frac{\mathsf{w} \times \mathsf{w}}{\mathsf{w}} = \mathrm{K}_{\mathsf{a}}$$

$$\mathsf{w} \times \mathrm{K}_{\mathsf{a}} = \mathsf{w}$$

$$\mathsf{w} = \mathsf{w} \times \mathsf{w}$$

حيث

س : تركيز أيون الهيدرونيوم أو تركيز الأيون السالب الناتج من تفكك الحمض.

ص: تركيز الحمض الأصلي (تركيزه لا يتغير بعد التفكك).

. ثابت تأين الحمض: K_a

وعليه يمكن إطلاق التعميم التالي:

$$[HA] \times K_a = [H_3O^+]$$

وتستخدم العلاقة السابقة لحساب $[H_3O^+]$ في محاليل الحموض الضعيفة.

 K_a تعد قيمة K_a مقياساً لقدرة الحمض على تكوين أيونات H_3O^+] ، فكلما زادت قيمة وزاد H_3O^+] وزادت قوة الحمض مع ملاحظة أن الحموض القوية ليس لها قيم ثوابت تأين.

ومن الضروري حفظ العلاقات التالية:

سؤال 1:

 ${\rm K_a}=1,6)$ احسب [${\rm H_3O^+}$] في محلول حمض الميثانويك HCOOH بتركيز 0,1 مول/لتر (${\rm K_a}=1.6$).

الحل:

$$\frac{[H_3O^+] [HCOO^-]}{[HCOOH]} = K_a$$

وبما أن [+HCOO] = [H₃O] = س عند الاتزان فإن العلاقة السابقة تصبح :

$$\frac{\omega \times \omega}{\omega - \cdot, 1} = K_a$$

وبإهمال (س) المتفككة من الحمض تصبح العلاقة السابقة على النحو التالي:

$$\frac{\sqrt[4]{m}}{\sqrt[4]{n}} = \frac{\sqrt{m} \times m}{\sqrt[4]{n}} = \mathbf{K}_{a}$$

$$\sqrt{m} = \mathbf{K}_{a}$$

$$\sqrt{m} = \mathbf{K}_{a}$$

وبالتعويض في ثابت التأين:

س
$$[H_3O^+]=$$
 ک $imes$ مول اتر

سؤال 2 :

يبين الجدول التالي قيم ثوابت التأين (K_a) لبعض الحموض الضعيفة عند درجة 25°س، ادرس الجدول ثم أجب عن الأسئلة التي تليه:

Ka	صيغة الحمض	اسم الحمض
*-1• × 1,0	H_2SO_3	حمض الكبريتيت
٤- N· × V,Y	HF	حمض الهيدروفلوريك
¹⁻ 1• × €	HNO ₂	حمض النيتريت
²-1• × 1,¥	НСООН	حمض الميثانويك
°-1. × 7,0	C ₆ H ₅ COOH	حمض البنزويك
0-1. × 1,1	CH₃COOH	حمض الإِيثانويك
γ-1·× ٤,٣	H_2CO_3	حمض الكربونيك
^-1• × ٣,0	HOC1	حمض الهيبوكلوريت
1-1·× ٦,٢	HCN	حمض الهيدروسيانيك

- 1. اكتب صيغة الحمض الأقوى والحمض الأضعف في الجدول، ثم اكتب صيغة القاعدة المرافقة لكل منهما.
- H_3O^+ المتساويين في التركيز يكون تركيز ال H_2CO_3 أي الحمضين: H_3O^+ أم أعلى؟
 - 3. أيهما له أعلى رقم هيدروجيني: HF أم HOCl (لهما التركيز نفسه)؟
- له أيّ الحمضين المتساويين في التركيز: HCOOH أم $C_6H_5ar{COOH}$ أكثر تأيناً في الماء؟
- 5. هل تتوقع أن تكون قيمة pH لمحلول حمض الإيثانويك الذي تركيزه 0,01 مول/لتر أكبر أم أقل من 2 ؟ ولماذا؟

سؤال 3 :

يبين الجدول التالي قيم ثوابت التأين (K_a) لحمضين، أجب عن الأسئلة الآتية:

4/8 منهاج

تركيز محلول الحمض (مول/لتر)	Ka	الحمض
٠,٠٠٤	°-1 · × ‡	HA
٠,٩	°-1.×1	НВ

- 1. أي الحمضين أقوى؟
- 2. في أي محلولي الحمضين يكون تركيز أيون الهيدرونيوم أعلى؟
 - 3. أي محلولي الحمضين أعلى pH ؟

سؤال 4 :

يبين الجدول المجاور تركيز أيون الهيدرونيوم لثلاثة حموض ضعيفة متساوية التركيز. ادرس الجدول ثم أجب عن الأسئلة التالية:

* 3 .0				
[H ₃ O ⁺]	الحمض			
-1 · × ∨	HX			
1-1+ × £	HY			
-1 · × ±	HZ			

- اكتب صيغة الحمض الأقوى.
 - 2. ما القاعدة المرافقة لكل من الحموض المذكورة؟
 - 3. أي محاليل الحموض المذكوره تمتلك قيمة pH أعلى؟
 - 4. رتب محاليل الحموض الموجودة في الجدول حسب [OH] .
 - 5. أي محاليل الحموض يوصل التيار الكهربائي بشكل أكبر؟
 - اكتب صيغ الدقائق الموجودة في محلول HZ عند الاتزان.

سؤال 5 :

احسب قيمة الرقم الهيدروجيني pH لمحلول HF تركيزه 0,05 مول/لتر. (لــو 6 = 0,78)

 4 ىساوي 7,2 \times 10 ملماً بأن ثابت تأين الحمض ($\mathrm{K_a}$) يساوي

سؤال 6:

 $pH \ 2.4$ الذي رقمه الهيدروجيني HNO_2 الحسب تركيز محلول حمض (K_a) يساوي 10×4 . (لـو 10×4 علماً بأن ثابت تأين الحمض (K_a) يساوي 10×4 .

سؤال 7:

احسب قيمـة ،K لمحلـول الحمـض الضعيـف HZ الـذي تركيـزه 0,2 مـول/لتر، ورقمـه الهيدروجيني يساوي 4

سؤال 8:

أذيب (1,22) غ من حمض البنزويك (C_6H_5COOH) في لتر من الماء فتبين أن [$^+$ 1,22] غرمول عن من حمض البنزويك ($^+$ 10× الكتلة المولية للحمض = 122 غ/مول).

سؤال 9 :

المعلومات	الحمض	
$^{\vee}$ - $^{\vee}$ - $^{\vee}$ - $^{\vee}$	HD	
$^{r_{-}} \lor \cdot \times \pounds = \mathbf{K}_{\mathbf{a}}$	HC	
°-1·×∘= [Z-]	HZ	
`-1 · × ∘ = [B]	HB+	
• = pH	HQ	
۳,	HX	

يبين الجدول المجاور بعض الحموض الضعيفة بتركيز 0,2 مول/لتر لكل منها. أجب عن الأسئلة التالية: (لـو 5 = 0,7)

- 1. أي الحمضين: HD أم HC هو الأقوى؟
- 2. أي الحمضين: HZ أم ⁺HB يمتلك محلوله [OH] أعلى؟
 - 3. أي الحمضين: HQ أم HX يمتلك قيمة K أعلى؟
 - 4. أي الحمضين: HQ أم HZ يمتلك قيمة pH أقل؟
 - 5. أي الحمضين: HX أم HZ أكثر تأيناً في الماء؟

6. كم تبلغ قيمة pH لمحلول الحمض +HB ؟

سؤال 10 :

يبيّن الجدول الآتي عدداً من محاليل الحموض الافتراضية الضعيفة متساوية التركيز (0,1) مــول/لتر وقيــم pH لهـا، ادرســه ثــمّ أجــب عــن الأســئلة التــي تليــه:

HB	HZ	HQ	H_2A	HY	XH ⁺	محلول الحمض
٦٫٣	٦	٤,٥	۲	٤	٥	pН

- 1. أي الحمضين أقوى: HY أم HQ ؟
- $^{ ext{.}}$ اکتب معادلة تفاعل $^{ ext{B}}$ مع $^{ ext{B}}$
- 3. أي حموض الجدول يمتلك قيمة K_a أعلى؟
 - K_{a} للحمض HZ ؛ كم تبلغ قيمة

 $^{+}$ و $^{+}$ $^{+}$ و $^{+}$ $^{+}$ $^{-}$ ما صيغة القاعدة المرافقة لكل من الحمضين $^{+}$ و $^{+}$

سؤال 11 :

رتب محاليل الحموض التالية تصاعدياً وفق زيادة قيمة pH إذا كانت تراكيزها متساوية: $CH_3COOH~(K_a=1.8 \times {}^5-10)~$ HCl ، HCOOH $(K_a=1.7 \times {}^4-10)$

سؤال 12 : سؤال موضوعي وزاري

إذا كانت قيمة pH تساوي (3) لمحلول من الحمض الضعيف HA تركيزه (0,1) مول/لتر . فإن قيمة K_a لهذا الحمض تساوي:

أ) 1
$$\times$$
 10 $^{ ext{-}5}$ ب) 1 \times 10 $^{ ext{-}6}$ ج) 1 \times 10 $^{ ext{-}7}$ د) $^{ ext{-}10}$ د) $^{ ext{-}10}$

إجابات أسئلة الدرس في الملفات المرفقة.