

إجابات الأسئلة

التكامل غير المحدود

السسؤال الأول

جد كلا مما يأتى :

الحل:

$$i) \int \frac{1}{7} c \omega = \frac{1}{7} \omega + \rightleftharpoons$$

$$\dot{\varphi} = \frac{1}{2} \times c \omega = \int \omega^{\circ} c \omega = \frac{1}{2} + \frac{1}{2}$$

$$= + \frac{\omega}{r} - \omega = \gamma \omega = \gamma \omega - \gamma + \frac{\omega}{r} + \frac{\omega}{r}$$

ا/1

السوال الشاني

جد كلا مما يأتى:

اً)
$$\int (1+w^{\xi})(w-1)\int (1-w^{\xi})(1-w^{\xi})(1-w^{\xi})(1-w^{\xi})(1-w^{\xi})(1-w^{\xi})(1-w^{\xi})(1-w^{\xi})$$

الحل:

$$(7 - \omega) (3\omega + 1) c \omega = \int (\Lambda \omega + 7 - 3\omega^{7} - \omega) c \omega$$

$$\Rightarrow + \frac{7\omega^{7}}{7} - \omega + 7\omega - \frac{3\omega^{7}}{7} + 2\omega - \frac{3\omega^{7}}{7} + \frac{3\omega^{7$$

جاس د س
$$=$$
 $\sqrt{7}$ جاس د س $=$ $\sqrt{7}$ جاس د س $=$ $\sqrt{7}$ جاس د س $=$ $\sqrt{7}$ جاس د س

2 منهاجم

السوال الشالث

$$\bullet \neq \omega$$
 ، س عندما $\omega = \circ$ ، حیث ص $= \frac{1+\omega \xi}{\omega}$ د س ، $\omega \neq 0$

الحل:

نقوم باشتقاق الطرفين ،،

$$\frac{c}{c} \frac{c}{c} \frac{c}{c} = \frac{c}{c} \frac$$

السوال الرابع

إذا كان ق اقترانا قابلاً للاشتقاق ، وكان ق (س) = آس ـ ١س + ه ، وكان ق (-١) = ٢ فجد قاعدة الاقتران ق .

الحل:

$$\tilde{g}(\omega) = \int \tilde{g}'(\omega) c \, \omega = \int (T\omega - \Lambda \omega^7 + 0) c \, \omega = T\omega^7 - T \omega^3 + 0\omega + \infty$$

$$\tilde{g}(-1) = T (-1)^7 - T (-1)^3 + 0(-1) + \infty = T$$

3/5

السوال الخامس

$$(1)$$
 النا (3) و (3) و (3) و (3) و (4) و

الحل:

نقوم باشتقاق الطرفين ،،

$$\frac{c}{c \, w} \int 3^2 (w) \, c \, w = (7w)^3 - 7w + 7w - 9)^2 \, du$$

$$3'(w) = \lambda (w)^{2} - \lambda (w) = \lambda (w)^{2} - \lambda (w)^{2$$

السوال السادس

الحل:

$$\ddot{\mathfrak{o}}$$
 (س) = $\int \ddot{\mathfrak{o}}$ (س) د س = $\int (\Upsilon w - \circ)$ د س = $w^{\Upsilon} - \circ w + \dot{\mathfrak{e}}$

$$T = (1)$$
 $= (1) = (1) = (1) = (1) = (1) = (1) = (1) = (1) = 7$ $= (1) = (1) = 7$ $= (1) = 7$

لفهم إجابات أسئلة درس التكامل غير المحدود ، شاهد الفيديو

السوال السبابع

إذا كان ق اقترانا قابلاً للاشتقاق ، وكان ق(m) = m (m = m) + m^{7} ، وكان ق (m) = -1 ، فجد قيمة ق (n) .

الحل

$$^{\mathsf{T}}$$
قُ (س) = ۱۸س – ۱۵س $^{\mathsf{T}}$ + کس

ق (س) =
$$\int$$
ق (س) د س = $\int (\wedge \wedge w - \wedge \wedge w - \wedge \wedge w - \wedge \wedge w - \wedge w - \wedge w - \wedge w - \wedge \wedge w - \wedge$

$$\Lambda = 17^{-1} + 10^{-1} +$$

السوال الشامن

إذا كان ق اقترانا قابلاً للاشتقاق ، وكان ق (س) = $\frac{m' + 7m + Nm^{"}}{m}$ ، $m \neq \text{صفرا ، وكان ق (۱)} = 11$ ، فجد قاعدة الاقتران ق.

الحل:

5/5