ögöll öylö

في الرياضيات الفرع العلمي | توجيمي النهاج الجديد

مع الإجابات الكاملة لها تشمل جميع الأسئلة كتاب الطالب وكتاب التمارين

أعداد

أ.إياد الحمد

للتواصل مع المعلم

0795604563

د.خالد جلال

للتواصل مع المعلم

0799948198

طريق التفوق پ

الرياضيات

الصف الثاني عشر- الفرع العلمي

الفصل الدراسي الثاني

الوحدة الرابعة التكامل

إعداد

أ.إياد الحمد 0795604563

د.خالد جلال 0799948198

الفهرس

الجزء الأول

الصفحة	الموضوع	
2 الى 10	أسئلة تكامل اقترانات خاصة	1
11 الى 18	أسئلة التكامل بالتعويض	<mark>2</mark>
19 الى 24	أسئلة التكامل بالكسور الجزئية	<mark>3</mark>
25 الى 30	أسئلة التكامل بالأجزء	<mark>4</mark>
31 الى 39	أسئلة المساحات و الحجوم	<mark>5</mark>
40 الى 46	أسئلة المعادلة التفاضلية	<mark>6</mark>
47 الى49	أسئلة اختبار نهاية الوحدة	<mark>7</mark>

الجزء الثاني

الصفحة	الموضوع	
<mark>23 الى 23</mark>	إجابات أسئلة تكامل اقترانات خاصة	1
<mark>24 الى 57</mark>	إجابات أسئلة التكامل بالتعويض	2
58 الى 88	إجابات أسئلة التكامل بالكسور الجزئية	3
<mark>89 الى 116</mark>	إجابات أسئلة التكامل بالأجزء	<mark>4</mark>
117 الى <mark>1</mark> 34	إجابات أسئلة المساحات و الحجوم	<mark>5</mark>
135 الى 157	إجابات أسئلة المعادلة التفاضلية	<mark>6</mark>
158 الى 171	إجابات أسئلة اختبار نهاية الوحدة	<mark>7</mark>

الدرس

تكامل اقترانات خاصة Integration of Special Functions

&

مسألة البوم

يُمثِّل الاقتران (P(t) عدد الخلايا البكتيرية بعد t يومًا من بَدْء دراستها في مجتمع بكتيري. إذا كان عدد هذه الخلايا عند بَدْء الدراسة هو 200000 خلية، فأجد عددها في المجتمع البكتيري $P'(t) = 200e^{0.1t} + 150e^{-0.03t}$: بعد 12 يومًا من بَدْء الدراسة، علمًا بأنَّها تتغيَّر بمُعدَّل

الأمثلة و أتحقق من فهمي

مثال 1

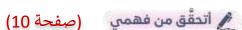
أجد كُلًّا من التكاملات الآتية:

$$1 \int 2e^{4x+3} dx$$

1)
$$\int 2e^{4x+3} dx$$
 2) $\int_0^2 (6e^{-3x} + x^3) dx$ 3) $\int \sqrt{e^{x+1}} dx$ 4) $\int (5^x + 7) dx$

$$\int \sqrt{e^{x+1}} \ dx$$

$$4 \int (5^x + 7) dx$$



أجد كُلًّا من التكاملات الآتية:

a)
$$\int (5x^2 - 3e^{7x}) dx$$
 b) $\int_0^{\ln 3} 8e^{4x} dx$

b)
$$\int_{0}^{\ln 3} 8e^{4x} dx$$

c)
$$\int \sqrt{e^{1-x}} dx$$

c)
$$\int \sqrt{e^{1-x}} dx$$
 d) $\int (3^x + 2\sqrt{x}) dx$

مثال 2

أجد كُلًّا من التكاملات الآتية:

$$1) \int 2\sin(4x+3) dx$$

$$\int_{0}^{\pi/12} \sec^{2} 3x \ dx$$

الياد الحمد 0795604563 & د.خالد جلال 0799948198

طريق التفوق في الرياضيات :

🥻 أتحقُّق من فهمي 💮 (صفحة 12)

أجد كُلًّا من التكاملات الآتية:

a)
$$\int \cos(3x - \pi) dx$$

b)
$$\int (\csc^2(5x) + e^{2x}) dx$$

b)
$$\int (\csc^2(5x) + e^{2x}) dx$$
 c) $\int_0^{\pi/3} (\sin 2x - \cos 4x) dx$

أجد كُلًّا من التكاملات الآتية:

$$1 \int \tan^2 2x \, dx$$

$$2 \int_0^\pi \sin^2 x \, dx$$

1
$$\int \tan^2 2x \, dx$$
 2 $\int_0^{\pi} \sin^2 x \, dx$ 3 $\int \sin 4x \cos 5x \, dx$ 4 $\int \frac{dx}{1 - \cos x}$

$$\oint \frac{dx}{1 - \cos x}$$

🥻 أتحقُّق من فهمي 💮 (صفحة 14)

أجد كُلًّا من التكاملات الآتية:

a)
$$\int \cos^4 x \, dx$$

a)
$$\int \cos^4 x \, dx$$
 b) $\int_0^{\pi/6} \sin 3x \sin x \, dx$ c) $\int \frac{dx}{1 + \cos x}$

c)
$$\int \frac{dx}{1 + \cos x}$$

مثال 4

أجد كُلًّا من التكاملات الآتية:

1)
$$\int \left(2e^x + \frac{3}{x}\right) dx$$
 2) $\int \frac{1}{4x - 1} dx$ 3) $\int \frac{2x^5 - 4}{x} dx$ 4) $\int \frac{2x}{x^2 - 1} dx$

$$\int \frac{2x^5 - 4}{x} \, dx$$

$$\oint \frac{2x}{x^2 - 1} \, dx$$

$$\int \frac{6x}{x^2 + 9} \, dx$$

$$7 \int \tan x \, dx$$

$$8 \int \sec x \, dx$$

🥻 أتدقُّق من فهمي 💮 (صفحة 16)

أجد كُلًّا من التكاملات الآتية:

a)
$$\int \left(\sin x - \frac{5}{x}\right) dx$$
 b) $\int \frac{5}{3x+2} dx$ c) $\int \frac{x^2 - 7x + 2}{x^2} dx$

b)
$$\int \frac{5}{3x+2} dx$$

c)
$$\int \frac{x^2 - 7x + 2}{x^2} dx$$

d)
$$\int \frac{2x+3}{x^2+3x} \, dx$$

d)
$$\int \frac{2x+3}{x^2+3x} dx$$
 e) $\int \frac{\sin 2x}{1+\cos 2x} dx$ f) $\int \cot x dx$

f)
$$\int \cot x \, dx$$

g)
$$\int \frac{e^x}{e^x + 7} dx$$
 h) $\int \csc x dx$

h)
$$\int \csc x \, dx$$

د.خالد جلال 0795604563 & الياد العمد 0795604563

& ا.اباد الحمد 0795604563 د.خالد جلال 0799948198 طريق التفوق في الرياضيات :

$$\int \frac{x^3 + x}{x - 1} \, dx : \int \frac{x^3 + x}{x - 1} \, dx$$

🏄 أتحقُّق من فهمي (صفحة 17)

$$\int \frac{x^2 + x + 1}{x + 1} dx : \int \frac{x^2 + x + 1}{x + 1} dx$$

$$\int_{-2}^{6} f(x)dx$$
: فأجد قيمة $f(x) = |x|$ إذا كان: (2)

$$\int_{0}^{3} f(x)dx$$
: إذا كان: $|4-x^{2}| = |4-x^{2}|$ ، فأجد قيمة (3)

🥻 اتحقَّق من فهمي 💮 (صفحة 19)

.
$$\int_{-2}^{2} f(x)dx$$
 إذا كان: $|1 - x| = |1 - x|$ فأجد قيمة: (b)

.
$$\int_{-4}^{0} f(x)dx$$
 : إذا كان: $|x^2 - 1| = |x^2 - 1|$ فأجد قيمة (©

(مثال 7 : من الحياة

تلوُّث: يُعالَج التلوُّث في بحيرة باستعمال مضاد للبكتيريا. إذا كان عمدد الخلايا البكتيرية الضمارَّة في البحيرة يتغيَّر بمُعدَّل: $N(t) = -\frac{2000t}{1 + c^2}$ عدد الخلايا البكتيرية لكل ملّيلتر من الماء، بعد t يومًا من استعمال

المضاد، فأجد (N(t)، علمًا بأنَّ العدد الابتدائي للخلايا هو 5000 خلية لكل ملّيلتر.

ا.اباد الحمد 0795604563 & د.خالد جلال 0799948198 طريق التفوق في الرياضيات :

🥻 أتحقّق من فهمي 🌎 (صفحة 20)

تلوُّث: تسـرَّب نفط من ناقلـة بحرية، مُكوِّنًا بقعة دائرية الشـكل على سـطح الماء، نصف قُطْر ها R(t) قدمًا بعد t دقيقة من بَدْء التسرُّب. إذا كان نصف قُطْر الدائرة يز داد بمُعدَّل: R(0) = 0 عَلَمًا بِأَنَّ $R'(t) = \frac{21}{0.07t + 5}$.

مثال 8

يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: $v(t) = \sin t$ الزمن بالثواني، وv سرعته المتجهة بالمتر لكل ثانية:

- إذا بدأ الجُسَيْم حركته من نقطة الأصل، فأجد موقع الجُسَيْم بعد 3 ثانية من بَدْء الحركة.
 - 2 أجد إزاحة الجُسَيْم في الفترة $[0,3\pi]$.
 - $[0,3\pi]$ أجد المسافة الكلية التي قطعها الجُسَيْم في الفترة أ $[0,3\pi]$.

🥻 أتحقُّق من فهمي 💮 (صفحة 23)

t عيث، $v(t)=3\cos t$ يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: الزمن بالثواني، و٧ سرعته المتجهة بالمتر لكل ثانية:

- إذا بدأ الجُسَيْم حركته من نقطة الأصل، فأجد موقع الجُسَيْم بعد # ثانية من بَدْء الحركة.
 - $[0,2\pi]$ أجد إزاحة الجُسَيْم في الفترة أ $[0,2\pi]$
 - $(0, 2\pi)$ أجد المسافة الكلية التي قطعها الجُسَيْم في الفترة أ $(0, 2\pi)$

المسائل معدد (صفحة 24) 🚺 أتدرَّب وأخلُ المسائل

أحِد كُلًّا من التكاملات الآتية:

2
$$\int \left(e^{0.5x} - \frac{3}{e^{0.5x}}\right) dx$$
 3 $\int (4 \sin 5x - 5 \cos 4x) dx$

$$\int \left(\sqrt{e^x} - \frac{1}{\sqrt{e^x}}\right)^2 dx$$

4
$$\int \left(3 \sec x \tan x - \frac{2}{5x}\right) dx$$
 5 $\int \left(\sqrt{e^x} - \frac{1}{\sqrt{e^x}}\right)^2 dx$ 6 $\int (\sin (5 - 3x) + 2 + 4x^2) dx$

ا.اياد العمد 0795604563 & د.خالد جلال 0799948198

ا.اياد الحمد 0795604563

د.خالد جلال 0799948198

طريق التفوق في الرياضيات :

 $(e^{4-x} + \sin(4-x) + \cos(4-x))dx$

 $\int \left(3\csc^2(3x+2) + \frac{5}{x}\right) dx$

 $\left(\frac{e^x}{e^x}\right) dx$

 $\int \frac{\cos 2x}{\sin x \cos x + 4} dx$

 $\frac{dx}{5-\frac{x}{2}}$

 $\int \frac{1}{1-\sin x} dx$

 $\int \sec^2 x (1 + e^x \cos^2 x) dx$

(18) $\int \sin 3x \cos 2x \, dx$ (19) $\int \frac{2x+3}{3x^2+9x-1} \, dx$

 $20 \int \frac{x^2 + x + 1}{x^2 + 1} dx$

 $\left(\frac{1 + \cos x}{\sin^2 x} + (\sin^2 x \csc x) \right) dx$

 $(\sec x + \tan x)^2 dx$

23 $\int (9\cos^2 x - \sin^2 x - 6\sin x \cos x) dx$

 $(\cos^4 x - \sin^4 x) dx$

أجد قيمة كلِّ من التكاملات الآتية:

 $2 \int_0^{\pi} 2 \cos \frac{1}{2} x \ dx$

 $\sum_{0}^{2\pi} |\sin x| dx$

 $\begin{cases} e & \frac{8x}{x^2 + 1} dx \end{cases}$

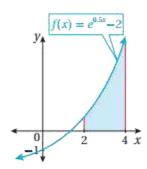
31 $\int_{0}^{\pi/6} \sin 3x \cos x \, dx$ 32 $\int_{\pi/4}^{\pi/3} \frac{\cot^2 x}{1 + \cot^2 x} \, dx$

 $\iint_{0}^{3} (x-5^{x}) dx$

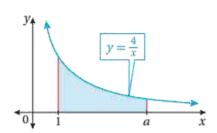
34 $\int_{0}^{4} |x^{2} - 4x + 3| dx$ 35 $\int_{1}^{4} (3 - |x - 3|) dx$

منهاجی منعلم العادن

د. خالد جلال 0799948198 & 0799948198



- $f(x) = e^{0.5x} 2$:المُعَلَّلة بين المحور x ومنحنى الاقتران أجد مساحة المُطلَّلة بين المحور x المُعَلَّل في الشكل المجاور.
 - - $a \neq 0$: حيث: $\int_{0}^{a} \frac{x}{x^{2} + a^{2}} dx = \ln \sqrt{2}$. حيث 39



- أبيِّن الشكل المجاور منحنى الاقتران: $\frac{4}{x} = \frac{4}{x}$. إذا كانت مساحة المنطقة المحصورة بين منحنى الاقتران f(x)، والمحور x، والمستقيمين: a هي 10 وحدات مربعة، فأجد قيمة الثابت a.
- f(0) اِذَا كَانَ: $f(\pi) = 3$ وَكَانَ: $f(x) = \int \cos\left(\frac{1}{2}x + \pi\right) dx$ اِذَا كَانَ:
- $y = \frac{1+\sin 2x}{2}$ و كان: $y = \frac{1+\sin 2x}{2}$
- يُمثُّل الاقتران y إذا علمْتُ أَنَّ منحناه يمرُّ المماس لمنحنى الاقتران y أجد قاعدة الاقتران y إذا علمْتُ أَنَّ منحناه يمرُّ النقطة (0, 1).
 - . b و نان: a النسبيين: a و النابتين النسبيين: a و النابتين النسبيين: a و النابتين النسبيين: a و النابتين النسبيين: a
- يُمثّل الاقتران: $f'(x) = \cos^2 x$ ميل المماس لمنحنى الاقتران f(x). أجد قاعدة الاقتران $f(x) = \cos^2 x$ يمثّ بنقطة الأصل.

طريق التفوق في الرياضيات :

يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: v v الزمن بالثواني، وv سرعته يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: المتجهة بالمتر لكل ثانية. إذا كان الموقع الابتدائي للجُسَيْم هو m 3، فأجد كُلًّا ممّا يأتي:

- هوقع الجُسَيْم بعد t ثانية.
- 🐠 موقع الجُسَيْم بعد 100 ثانية.

بِيئة: في دراسة تناولت أحد أنواع الحيوانات المُهدَّدة بالانقراض في غابة، تَبيَّن أنَّ عدد حيوانات هذا النوع P(t) يتغيَّر بمُعدَّل: $P'(t) = -0.51e^{-0.03t}$ الزمن بالسنوات بعد بَدُء الدراسة:

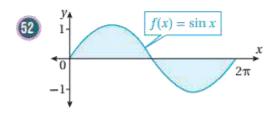
- أجد قاعدة الاقتران P(t) عند أيّ زمن t، علمًا بأنَّ عدد حيوانات هذا النوع عند بَدْء P(t)الدراسة هو 500 حيوان.
- 49 أجد عدد الحيوانات بعد 10 سنوات من بَدْء الدراسة، مُقرّبًا إجابتي إلى أقرب عدد صحيح.

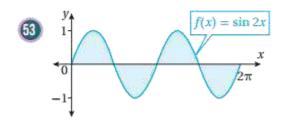
طبب: في تجربة لمدواء جديد أُعطِي لمريض لديمه ورم حميد، حجمه 30 cm³، تَبيَّن أنَّ $P'(t) = 0.15 - 0.9e^{0.006t}$: نعنيّ بمعددً التجربة يتغيّ و التجربة يتغيّ و التجربة يتغيّ و التجربة التجربة يتغيّ و التجربة التجربة التعربة التعرب مَقيسًا بوحدة (cm3/day):

- أجد قاعدة حجم الورم بعد t يومًا من بَدْء التجربة.
 - أجد حجم الورم بعد 10 أيام من بَدْ التجربة.

🦠 مهارات التفكير العليا 💶 (صفحة 24)

تبرير: أجد مساحة المنطقة المُظلَّلة في كلِّ من التمثيلين البيانيين الآتيين، مُبرِّرًا إجابتي:





ا.اباد العمد 0795604563 & د.خالد جلال 0799948198 طريق التفوق في الرياضيات :

تحدِّ: أجد كُلًّا من التكاملات الآتية:

$$\int \frac{\sec x}{\sin x - \cos x} dx$$

$$\int \frac{\cot x}{2 + \sin x} dx \qquad \qquad \int \int \frac{1}{x \ln x^3} dx$$

$$\int \frac{1}{x \ln x^3} dx$$

$$a>0$$
 : حيث: $a>0$ ميث: $a>0$ أجد قيمة الثابت $a>0$ حيث: $a>0$ ثبرير: إذا كان: $a>0$ حيث: $a>0$ عيث: $a>0$

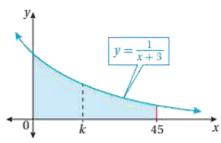
$$\int_{0}^{\pi/4} \cos x \cos 3x \, dx - \int_{0}^{\pi/4} \sin x \sin 3x \, dx = 0$$
 قبریر: أثبِت بطریقتین مختلفتین أنَّ: 68

. قبرير: إذا كان:
$$(1 - \pi \sin kx) dx = \pi (7 - 6\sqrt{2})$$
 فأجد قيمة الثابت k مُبرِّرًا إجابتي. $(1 - \pi \sin kx) dx = \pi (7 - 6\sqrt{2})$

تحدِّ: يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران:

$$v(t) = \begin{cases} 2t+4 & , 0 \le t \le 6 \\ 20 - (t-8)^2 & , 6 < t \le 10 \end{cases}$$

حيث t الزمن بالثواني، وv سرعته المتجهة بالمتر لكل ثانية. إذا بدأ الجُسَيْم حركته من نقطة الأصل، فأجد كُلًّا ممّا يأتي:



🔞 تحدُّ: يُبيِّن الشكل المجاور المنطقة المحصورة بين منحني الاقتران: x = 45, x = 0; والمحور x، والمستقيمين: $y = \frac{1}{x+3}$ أجد قيمة k التي تقسم المنطقة المُظلَّلة إلى منطقتين متساويتين في

أسئلة إضافية من كتاب التمارين

تكامل اقترانات خاصة Integration of Special Functions الدرس

ا.اياد الحمد 0795604563 & د. **خالد جلال** 0799948198

ا.اباد العمد 0795604563

د.خالد جلال 0799948198

طريق التفوق في الرياضيات:

أجد كُلًّا من التكاملات الآتية:

$$(\sin 2x - \cos 2x) dx$$

$$\oint \frac{e^x + 4}{e^{2x}} \ dx$$

$$\oint \int \frac{1}{\sqrt{e^x}} dx$$

$$\int \frac{x^2 - 2x}{x^3 - 3x^2} dx$$

$$\int \sin^2 \frac{x}{2} \, dx$$

$$\int \frac{3 - 2\cos\frac{1}{2}x}{\sin^2\frac{1}{2}x} \ dx$$

أجد قيمة كلِّ من التكاملات الآتية:

$$\int_0^1 \frac{e^x}{e^x + 4} dx$$

$$\int_{1}^{2} \frac{dx}{3x-2}$$

$$\int_0^{\pi/3} \sin x \, \cos x \, dx$$

$$\int_0^{\pi/16} (\cos^2 2x - 4\sin^2 x \cos^2 x) \, dx \, \mathbf{23} \, \int_0^{\pi/4} \, \frac{(1 + \sin x)^2}{\cos^2 x} \, dx$$

$$k > \frac{1}{2}$$
 : يَذَا كَانَ: $dx = 1$ أَنْ فَأَجِد قَيْمَة الثَّابِت $dx = 1$. إذا كَانَ: 26

$$a>0$$
 : غيث $a>0$: فأجد قيمة الثابت $a>0$: فأجد فيمة الثابت $a>0$: إذا كان $a>0$: فأجد قيمة الثابت $a>0$

ا.اياد الحمد 0795604563 & د.خالد جلال 0799948198 طريق التفوق في الرياضيات :

التكامل بالتعويض Integration by Substitution

الدرس

مسألة اليوم

يُمثِّل الاقتران G(t) الكتلة الحيوية لمجتمع أسماك في بحيرة بعد t سنة من بَدْء دراستها، حيث G مَقيسة بالكيلوغرام. إذا كان مُعدَّل تغيُّر الكتلة راد (kg/year) مَقِيسًا بوحدة $G'(t) = \frac{60000e^{-0.6t}}{(1+5e^{-0.6t})^2}$ مقيسًا بوحدة (kg/year)، وكانت الكتلة الحيوية لُلأسماك عند بَدْء الدراسة هي 25000 kg، فأجد الكتلة الحيوية المُتوقّعة للأسماك بعد 20 سنة من بَدْء الدراسة.

الأمثلة و أتحقق من فهمي

أجد كُلًّا من التكاملات الآتية:

$$1) \int 6x^2 (2x^3 - 3)^4 dx$$

$$\int \frac{\ln x}{x} dx$$

$$\int \sin^3 2x \cos 2x \, dx$$

$$\int \frac{5^{1/x}}{x^2} dx$$

🏄 أتحقُّق من فهمي 🌎 (صفحة 32)

أجد كُلًّا من التكاملات الآتية:

a)
$$\int 4x^2 \sqrt{x^3 - 5} \ dx$$

b)
$$\int \frac{1}{2\sqrt{x}} e^{\sqrt{x}} dx$$

c)
$$\int \frac{(\ln x)^3}{x} dx$$

d)
$$\int \frac{\cos(\ln x)}{x} dx$$

e)
$$\int \cos^4 5x \sin 5x \, dx$$

f)
$$\int x 2^{x^2} dx$$

0795604563 ااياد الحمد 8 د.خالد جلال 0799948198

أجد كُلًّا من التكاملات الآتية:

د.خالد جلال 0799948198

﴿ اُتحقُّق من فهمي ﴿ صِفحة 34 ﴾

أجد كُلًّا من التكاملات الآتية:

a)
$$\int \frac{x}{\sqrt{1+2x}} \ dx$$

a)
$$\int \frac{x}{\sqrt{1+2x}} dx$$
 b) $\int x^7 (x^4-8)^3 dx$ c) $\int \frac{e^{3x}}{(1-e^x)^2} dx$

c)
$$\int \frac{e^{3x}}{(1-e^x)^2} dx$$

أجد كُلًّا من التكاملين الآتيين:

$$\int \frac{dx}{x - \sqrt{x}}$$

$$2 \int x \sqrt[5]{(x+1)^2} \ dx$$

﴿ اتحقُّق من فهمي ﴿ صِفحة 35 ﴾

أجد كُلًّا من التكاملين الآتيين:

a)
$$\int \frac{dx}{x + \sqrt[3]{x}}$$

b)
$$\int x \sqrt[3]{(1-x)^2} \ dx$$

(مثال 4 : من الحياة

رُراعة: يُمثِّل الاقتران V(t) سعر دونم أرض زراعية بالدينار $V'(t) = \frac{0.4t^3}{\sqrt{0.2t^4 + 9000}}$: yat $t = 0.4t^3$ هو مُعدَّل تغيُّر سعر دونم الأرض، فأجد (V(t)، علمًا بأنَّ سعر دونم الأرض الآن هو JD 5000.

13

د.خالد جلال 0799948198 ا.اياد العمد 0795604563 &

طريق التفوق في الرياضيات:

🌶 اتحقَّق من فهمي 💮 (صفحة 37)

أسعار: يُمثَّل الاقتران p(x) سعر قطعة (بالدينار) تُستعمّل في أجهزة الحاسوب، حيث xعدد القطع المَبيعة منها بالمئات. إذا كان: $\frac{-135x}{\sqrt{9+x^2}}$ هو مُعدَّل تغيُّر سعر هذه القطعة، فأجد p(x) علمًا بأنَّ سعر القطعة الواحدة هـو p(x) عندما يكون عدد القطع المبيعة منها 400 قطعة.

أجد كُلًّا من التكاملين الآتيين:

🏄 اتحقُّق من فهمي 💮 (صِفحة 39)

أجد كُلًّا من التكاملين الآتيين:

a) $\int \sin^3 x \ dx$

b) $\int \cos^5 x \sin^2 x \, dx$

أجد كُلًّا من التكاملات الآتية:

1 $\int \tan^3 x \, dx$

 \bigcirc $\int \cot^4 x \ dx$

🎤 أتحقَّق من فهمي (<u>صفحة 41</u>)

أجد كُلًّا من التكاملات الآتية:

a) $\int \tan^4 x \ dx$

b) $\int \cot^5 x \ dx$ c) $\int \sec^4 x \tan^6 x \ dx$

مثال 7

 $\int_{0}^{\pi/2} \cos x \sqrt{1 + \sin x} \, dx$

 $\int_{1}^{25} \frac{x}{\sqrt{2x-1}} dx$

أجد قيمة كلُّ من التكاملين الآتيين:

0795604563 ا.ایاد الحمد 8 د.خالد جلال 0799948198

طريق التفوق في الرياضيات :

႔ أتحقَّق من فهمي 💮 (صِفحة 43)

أجد قيمة كلِّ من التكاملين الآتيين:

b)
$$\int_0^{\pi/3} \sec x \, \tan x \, \sqrt{\sec x + 2} \, dx$$

(صفحة 44)

أتدرَّب وأحُلُّ المسائل

أجد كُلًّا من التكاملات الآتية:

$$\oint \frac{x}{\sqrt{x+4}} dx$$

$$\frac{\sin x \cos x}{1 + \sin^2 x} dx$$

$$\int \frac{\sec^3 x + e^{\sin x}}{\sec x} \ dx$$

$$\int \frac{\sin x + \tan x}{\cos^3 x} \ dx$$

أجد قيمة كلِّ من التكاملات الآتية:

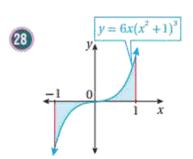
19
$$\int_0^{\pi/4} \sin x \sqrt{1 - \cos^2 2x} \ dx$$
 20 $\int_0^{\pi/2} x \sin x^2 \ dx$

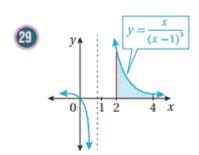
22
$$\int_{0}^{\pi/3} \sec^{2} x \tan^{5} x \, dx$$
 23 $\int_{0}^{2} (x-1)e^{(x-1)^{2}} \, dx$

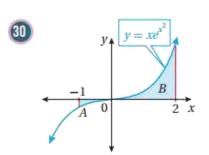
(3)
$$\int_{0}^{2} (x-1)e^{(x-1)^{2}} dx$$

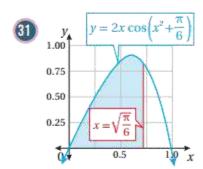
- $\int_0^1 \frac{10\sqrt{x}}{(1+\sqrt{x^3})^2} \ dx$
- $\int_0^{\pi/6} 2^{\cos x} \sin x \ dx$

أجد مساحة المنطقة المُظلَّلة في كلِّ من التمثيلات البيانية الآتية:





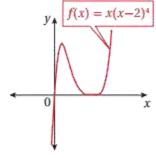




في كلِّ ممّا يأتي المشتقة الأولى للاقتران f(x)، ونقطة يمرُّ بها منحنى y = f(x). أستعمل المعلومات المعطاة لإيجاد قاعدة الاقتران f(x):

(2)
$$f'(x) = 2x(4x^2 - 10)^2$$
; (2, 10)

33
$$f'(x) = x^2 e^{-0.2x^3}$$
; $(0, \frac{3}{2})$



 $f(x) = x(x-2)^4$: يُبِيِّن الشكل المجاور جزءًا من منحنى الاقتران:

- اجد إحداثيي نقطة تماس الاقتران مع المحور x.
- .x. أجد مساحة المنطقة المحصورة بين منحنى الاقتران f(x) والمحور x
- يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: $v(t) = \sin \omega t \, \cos^2 \omega t$ ، حيث t الزمن بالثواني، و $v(t) = \sin \omega t \, \cos^2 \omega t$ ثانية. و $v(t) = \sin \omega t \, \sin \omega t$ ثانية.

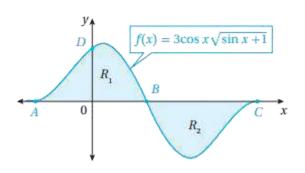
د.خالد جلال 0799948198 & ااياد العمد 0795604563

طريق التفوق في الرياضيات:

رواء في الدم بعد t دقيقة من حقنه في جسم C(t) تركيز دواء في الدم بعد t دقيقة من حقنه في جسم مريض، حيث C(t) مقيسة بالملّيغرام لكل سنتيمتر مُكعَّب (mg/cm³). إذا كان تركيز الدواء لحظة حقنه في جسم المريض C(t)0.5 mg/cm³، وأخذ يتغيَّر بمُعدَّل C(t)0.6 أجد C(t)1 فأجد C(t)2 فأجد C(t)3 فأجد أبيان ما يعتبر بمُعدَّل أبيان ما يعتبر أبيان ما يعتب

- . قصيحة من الإجابة بالصيغة الآتية: $\frac{a}{b} + c \ln d$ من الإجابة بالصيغة الآتية: $\frac{a}{b} + c \ln d$ من الإجابة بالصيغة الآتية ($\frac{\ln 4}{e^x 2} \frac{e^{4x}}{e^x 2} dx$
 - $f(x) = \ln \left| \frac{\cos 3}{\cos x} \right| + 5$ إذا كان: f(3) = 5 وكان: $f'(x) = \tan x$ إذا كان: 39

مهارات التفكير العليا 🕶 مهارات التفكير العليا



نبرير: إذا كان الشكل المجاور يُمثِّل منحنى الاقتران: $f(x) = 3\cos x \sqrt{\sin x + 1}$ الأتية تباعًا:

- .Dه (Cه، Bه) وA : النقاط كأن من النقاط أجد إحداثيي كأن من النقاط أجد إحداثيي
 - أجد مساحة المنطقة المُظلّلة.
- أبيِّن أنَّ للمنطقة R_1 والمنطقة R_2 المساحة نفسها.

$$\int_{1}^{16} \frac{\sqrt{x}}{1 + \sqrt[4]{x^3}} \, dx : أجد قيمة: 3$$

- $\int_{0}^{\pi/2} f(\cos x) dx = \int_{0}^{\pi/2} f(\sin x) dx$ نبریر: إذا کان f اقترانًا متصلًا، فأثبِت أنَّ: 4 نبریر: إذا کان f اقترانًا متصلًا، فأثبِت أنَّ
- . $\int_{0}^{1} x^{a} (1-x)^{b} dx = \int_{0}^{1} x^{b} (1-x)^{a} dx$ تبریر: إذا كان a و عددين حقيقيين موجبين، فأُثبِت أنَّ بين أنتا عنه a عددين حقيقيين موجبين، فأُثبِت أنَّ أنتا عنه أنتا عنه

تحدِّ: أجد كُلًّا من التكاملات الآتية:

$$46 \int \frac{dx}{x \ln x (\ln (\ln x))}$$

$$\int \frac{\sin x - \cos x}{\sin x + \cos x} dx$$

الدرس

2

التكامل بالتعويض Integration by Substitution

أجد كُلًّا من التكاملات الآتية:

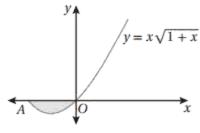
$$\oint \frac{x}{\sqrt{x^2+4}} dx$$

أجد قيمة كلِّ من التكاملات الآتية:

$$\int_0^{\pi/2} \frac{\sin 2x}{1 + \cos x} \ dx$$

$$\int_0^{\pi/4} \frac{e^{\tan x}}{\cos^2 x} \ dx$$

$$\int_0^{\pi/3} \cos^2 x \sin^3 x \, dx$$



 $y = x\sqrt{1+x}$ $f(x) = x\sqrt{x+1}$: الشكل المجاور جزءًا من منحنى الاقتران الشكل المنطقة المُظلَّلة في هذا الشكل.

في كلَّ ممّا يأتي المشتقة الأولى للاقتران f(x)، ونقطة يمرُّ بها منحنى y = f(x). أستعمل المعلومات المعطاة لإيجاد قاعدة الاقتران f(x):

1)
$$f'(x) = 16 \sin x \cos^3 x; (\frac{\pi}{4}, 0)$$

18
$$f'(x) = \frac{x}{\sqrt{x^2 + 5}}$$
; (2, 1)

د.خالد جلال 0799948198 & اایاد العمد 0795604563

 v_{j} يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: $\frac{-2t}{(1+t^{2})^{3/2}}$ عيث t الزمن بالثواني، و t مسرعته المتجهة بالمتر لكل ثانية. إذا كان الموقع الابتدائي للجُسَيْم هو t هأجد موقع الجُسَيْم بعد t ثانية.

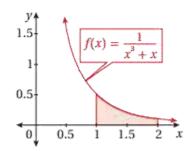
19

0795604563 ا.ایاد الحمد د.خالد جلال 0799948198 طريق التفوق في الرياضيات :

الدرس

التكامل بالكسور الجزئية Integration by Partial Fractions

مسألة اليوم



$$f(x) = \frac{1}{x^3 + x}$$
 يُبيِّن الشكل المجاور منحنى الاقتران:

أحد مساحة المنطقة المُظلَّلة منه.

الأمثلة و أتحقق من فهمي

مثال 1

$$\int \frac{x-5}{x^2-x-2} dx : \int \frac{x-5}{x^2-x-2} dx$$

🏄 أتحقُّق من فهمي 💮 (<u>صفحة 49</u>)

أجد كُلًّا من التكاملين الآتيين:

a)
$$\int \frac{x-7}{x^2-x-6} \ dx$$

b)
$$\int \frac{3x-1}{x^2-1} dx$$

$$\int \frac{3x^2+2}{x^3-2x^2+x} dx : \int \frac{3x^2+2}{x^3-2x^2+x} dx$$

﴿ اتحقُّق من فهمي ﴿ صِفحة 51 ﴾

أجد كُلًّا من التكاملين الآتيين:

$$a) \int \frac{x+4}{(2x-1)(x-1)^2} \ dx$$

b)
$$\int \frac{x^2 - 2x - 4}{x^3 - 4x^2 + 4x} dx$$

د.خالد جلال 0795604563 & الاد العمد 0795604563

طريق التفوق في الرياضيات :

مثال 3

$$\int \frac{5x^2 - 4x + 2}{(x - 1)(x^2 + 2)} dx$$
 أجد:

🏒 اتحقَّق من فهمي (<u>صفحة 52</u>)

أجد كُلًّا من التكاملين الآتيين:

b)
$$\int \frac{7x^2 - x + 1}{x^3 + 1} dx$$

a)
$$\int \frac{3x+4}{(x-3)(x^2+4)} dx$$

مثال 4

$$\int \frac{3x^4 - 1}{x^2 - 1} dx : \int \frac{3x^4 - 1}{x^2 - 1} dx$$

﴿ اتحقُّق من فهمي (صفحة 53)

أجد كُلًّا من التكاملين الآتيين:

b)
$$\int \frac{x^2 + x - 1}{x^2 - x} dx$$

a)
$$\int \frac{4x^3 - 5}{2x^2 - x - 1} dx$$

مثال 5

$$\int_{0}^{2} \frac{x-2}{x^{2}+5x+4} dx$$
: أجد قيمة

🏄 أتحقَّق من فهمي (<u>صفحة 54</u>)

أجد كُلًّا من التكاملين الآتيين:

b)
$$\int_{5}^{6} \frac{3x-10}{x^2-7x+12} dx$$

(a)
$$\int_{3}^{4} \frac{2x^3 + x^2 - 2x - 4}{x^2 - 4} dx$$

مثال 6

أجد كُلًّا من التكاملين الآتيين:

$$2 \int \frac{\sqrt{x}}{x-16} \ dx$$

$$\int \frac{e^x}{e^{2x} - e^x} \ dx$$

<u> ا</u> اتحقُّق من فهمي (<u>صفحة57</u>)

$$\frac{x}{(e^x+4)} dx$$
 :أجد كُلَّا من التكاملين الآتيين

a)
$$\int \frac{\sec^2 x}{\tan^2 x - 1} dx$$

b)
$$\int \frac{e^x}{(e^x - 1)(e^x + 4)} dx$$

أتدرَّب وأخلُّ المسائل <u>صفحة 57)</u>

أحد كُلًّا من التكاملات الآتية:

$$\int \frac{x-10}{x(x+5)} dx$$

3
$$\int \frac{4}{(x-2)(x-4)} dx$$

$$\oint \frac{3x+4}{x^2+x} dx$$

$$\int \frac{x^2}{x^2-4} dx$$

$$\int \frac{3x-6}{x^2+x-2} dx$$

$$\int \frac{4x+10}{4x^2-4x-3} dx$$

$$\oint \frac{4x}{x^2 - 2x - 3} dx$$

$$\int \frac{x^3 + 2x^2 + 2}{x^2 + x} dx$$

$$\int \frac{x^2 + x + 2}{3 - 2x - x^2} dx$$

$$\int \frac{2x-4}{(x^2+4)(x+2)} dx$$

$$\int \frac{x^3 - 4x^2 - 2}{x^3 + x^2} \ dx$$

16
$$\int \frac{3-x}{2-5x-12x^2} dx$$

$$\int \frac{3x^3 - x^2 + 12x - 6}{x^4 + 6x^2} \ dx$$

$$\int \frac{5x-2}{(x-2)^2} dx$$

أجد قيمة كلِّ من التكاملات الآتية:

20 $\int_{1/2}^{1/3} \frac{9x^2 + 4}{9x^2 - 4} dx$

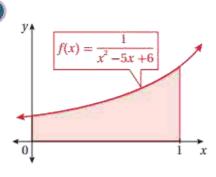
22
$$\int_{1}^{4} \frac{4}{16x^2 + 8x - 3} dx$$

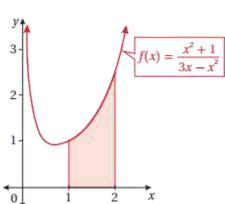
19 $\int_{3}^{4} \frac{6+3x-x^2}{x^3+2x^2} dx$

23
$$\int_{3}^{4} \frac{5x+5}{x^2+x-6} dx$$

أجد مساحة المنطقة المُظلَّلة في كلِّ من التمثيلين البيانيين الآتيين:

25



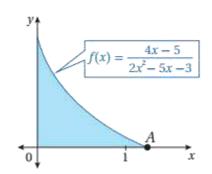


خالد جلال 0799948198

ا.اباد الحمد 0795604563

د.خالد جلال 0799948198

طريق التفوق في الرياضيات :



$$f(x) = \frac{4x-5}{2x^2-5x-3}$$
 : $f(x) = \frac{4x-5}{2x^2-5x-3}$: $f(x) = \frac{4x-5}{2x^2-5x-3}$

- (a) أجد إحداثي النقطة A.
- اجد مساحة المنطقة المُظلّلة.

أحد كُلًّا من التكاملات الآتية:

$$\int \frac{\sin x}{\cos x + \cos^2 x} \ dx$$

تبرير: أحُلُّ السؤالين الآتيين تباعًا:

- (33) أجد: على المريقتين مختلفتين، إحداهما الكسور الجزئية، مُبرِّرًا إجابتي.
 - $\int_{0}^{\ln 2} \frac{1}{1+e^{x}} dx : \int_{0}^{\ln 2} \frac{1}{1+e^{x}} dx = 0$
 - $\int_{0}^{9} \frac{5x^{2} 8x + 1}{2x(x 1)^{2}} dx = \ln\left(\frac{32}{3}\right) \frac{5}{24} : \tilde{0}$
 - $\int_{0}^{16} \frac{2\sqrt{x}}{x} dx = 4\left(1 + \ln\left(\frac{5}{3}\right)\right)$ آئِت آنًا تبریر: أثبت آنًا $\frac{2\sqrt{x}}{x}$
 - $\int_{0}^{1} \frac{4x^{2} + 9x + 4}{2x^{2} + 5x + 3} dx = 2 + \frac{1}{2} \ln \frac{5}{12}$ آئیت اُنَّ تبریر: اُئیت اُنَّ

تحدِّ: أحد كُلِّا من التكاملات الآتية:

$$38 \int \frac{\sqrt{1+\sqrt{x}}}{x} dx$$

إرشاد للسؤال 40: ما المضاعف المشترك الأصغر لدليلي الجذرين؟

طريق التفوق في الرياضيات :

أسئلة إضافية من كتاب التمارين

التكامل بالكسور الجزئية Integration by Partial Fractions

الدرس

3

أجد كُلًّا من التكاملات الآتية:

$$\int \int \frac{4}{x^2 + 4x} dx$$

$$\int \frac{x-10}{x^2-2x-8} dx$$

$$\int \frac{2x^2 + 6x - 2}{2x^2 + x - 1} dx$$

$$\int \frac{8x+24}{(x+1)(x-3)^2} dx$$

$$\int \frac{8x}{x^3 + x^2 - x - 1} dx$$

$$\int \frac{4}{x^3 - 2x^2} dx$$

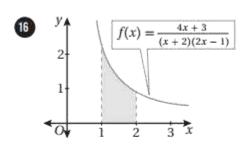
أجد قيمة كلِّ من التكاملات الآتية:

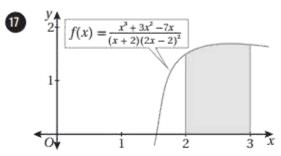
$$\int_{1}^{2} \frac{4}{x^{2} + 8x + 15} dx$$

$$\int_{1}^{2} \frac{10x^{2} - 26x + 10}{2x^{2} - 5x} dx$$

$$\int_{0}^{2} \frac{x^{2} - 3x + 10}{x^{2} - x - 6} dx$$

أجد مساحة المنطقة المُظلَّلة في كلِّ من التمثيلين البيانيين الآتيين:





أجد كُلًّا من التكاملات الآتية:

$$\int \frac{5\cos x}{\sin^2 x + 3\sin x - 4} dx$$

$$\oint \frac{\sec^2 x}{\tan^2 x + 5 \tan x + 6} dx$$

$$p > 1$$
 : حيث $\int_{1}^{p} \frac{1}{2x^{2} + x - 1} dx = \frac{1}{3} \ln \frac{4p - 2}{p + 1}$ حيث 2

25

ا.اياد العمد 0795604563

د.خالد جلال 0799948198

طريق التفوق في الرياضيات :

التكامل بالأجزاء Integration by Parts

&

الدرس

مسألة اليوم

يُمثِّل الاقتران: $S'(t) = 350 \ln(t+1)$ مُعــدَّل تغيُّر المبيعات الشهرية لكرة قدم جديدة، حيث t عدد الأشهر منذ طرح الكرة في الأســواق، و (S(t) عدد الكرات المَبيعة شهريًّا. أجد (S(t)، علمًا بأنَّ .S(0) = 0

الأمثلة و أتحقق من فهمي

أجد كُلًّا من التكاملات الآتية:

🏄 أتحقُّق من فهمي (صِفحة 63)

أجد كُلًّا من التكاملات الآتية:

- a) $\int x \sin x \, dx$ b) $\int x^2 \ln x \, dx$ c) $\int 2x \sqrt{7-3x} \, dx$ d) $\int 3x e^{4x} \, dx$

مثال 2

 $\int x^2 e^{2x} dx : \int x^2 e^{2x} dx$

﴿ اتحقَّق من فهمي ﴿ صِفحة 64)

a) $\int x^2 \sin x \, dx$

b) $\int x^3 e^{4x} dx$

أجد كُلًّا من التكاملين الآتيين:

ا.ایاد العمد 0795604563 د.خالد جلال 0799948198

26

ا.اياد العمد 0795604563 & د.خالد جلال 0799948198 طريق التفوق في الرياضيات :

 $\int e^x \cos x \ dx$: أجد

🏄 اتحقَّق من فهمي (<u>صفحة 66</u>)

أجد كُلًّا من التكاملين الآتيين:

b) $\int \sec^3 x \, dx$

a) $\int \frac{\sin x}{e^x} dx$

مثال 4

 $\int x^3 \sin x \, dx$ أجد:

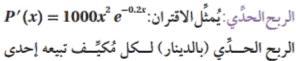
﴿ اتحقُّق من فهمي (صِفحة 67)

أجد كُلًّا من التكاملين الآتيين:

b) $\int x^5 e^x dx$

a) $\int x^4 \cos 4x \ dx$

(مثال 5 : من الحياة



الشركات، حيث x عدد المُكيِّفات المَبيعة، وP(x) مقدار الربح بالدينار عند بيع x مُكيِّفًا. أجد

P(0) = -2000 علمًا بأنَّ P(x) = -2000، علمًا بأنَّ

🎤 أتحقَّق من فهمي (<u>صفحة 69</u>)

التكلفية الحدِّية: يُمثِّل الاقتران: $C'(x) = (0.1x+1)e^{0.03x}$ التكلفية الحدِّية لكل قطعة (بالدينار) تُنتَج في إحدى الشركات، حيث x عدد القطع المُنتَجة، و C(x) تكلفة إنتاج x قطعة .C(10) = 200 بالدينار. أجد اقتران التكلفة .C(x) علمًا بأنَّ

 $\int_{1}^{2} x^{3} \ln x \ dx$:

<u> ا</u> اتحقُّق من فهمي (<u>صفحة 70)</u>

أجد كُلًّا من التكاملين الآتيين:

a)
$$\int_{1}^{e} \frac{\ln x}{x^{2}} dx$$

b)
$$\int_{0}^{1} xe^{-2x} dx$$

 $\int e^{\sqrt{x}} dx$ أجد الاقتران:

المُقُق من فهمي (<u>صفحة 71)</u>

أجد كُلًّا من التكاملين الآتيين:

b)
$$\int x^5 e^{x^2} dx$$

a) $\int (x^3 + x^5) \sin x^2 dx$

🏄 أَتَدرَّب وأَحُلُّ المسائل 💶 (<u>صفحة 71</u>)

أجد كُلًّا من التكاملات الآتية:

- 3 $\int (2x^2 1) e^{-x} dx$

 $\int \frac{x}{\sin^2 x} dx$

- $\int e^x \ln \left(1 + e^x\right) dx$

أجد قيمة كلِّ من التكاملات الآتية:

 $\int_{1}^{e} \ln x^{2} dx$

 $\int_{1}^{2} \ln(xe^{x}) dx$

ا.ایاد الحمد 0795604563

- د.خالد جلال 0799948198
- طريق التفوق في الرياضيات:

ا.ایاد العمد 0795604563

&

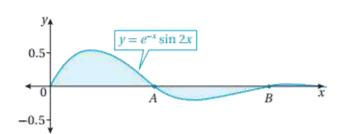
د.خالد جلال 0799948198

طريق التفوق في الرياضيات:

- (3) $\int_{0}^{1} \frac{xe^{x}}{(1+x)^{2}} dx$

أجد كُلًّا من التكاملات الآتية:

- $(23) \int e^{\cos x} \sin 2x \ dx$
- $\int \sin \sqrt{x} \ dx$



إذا كان الشكل المجاور يُمثَّل منحنى الاقتران: $f(x) = e^{-x} \sin 2x$ الأسئلة الثلاثة الآتية تباعًا:

- (13 أجد إحداثيي كلِّ من النقطة A، والنقطة B.
 - أجد مساحة المنطقة المُظلّلة.
- v يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: $v(t) = t e^{-t/2}$ ، حيث t الزمن بالثواني، و v سرعته المتجهة بالمتر لكل ثانية. إذا بدأ الجُسَيْم الحركة من نقطة الأصل، فأجد موقعه بعد t ثانية.

في كلِّ ممّا يأتي المشتقة الأولى للاقتران f(x)، ونقطة يمرُّ بها منحنى y = f(x). أستعمل المعلومات المعطاة لإيجاد قاعدة الاقتران f(x):

 $(0,3) f'(x) = 2xe^{-x}; (0,3)$

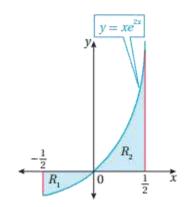
ورة تدريبية: تقدَّمــت دعاء لدورة تدريبية مُتقدِّمــة في الطباعة. إذا كان عــدد الكلمات التــي تطبعها دعاء فــي الدقيقة يــزداد بمُعدَّل: $N(t) = (t+6)e^{-0.25t}$

دعاء في الدقيقة بعد t أسبوعًا من التحاقها بالدورة، فأجد (N(t)، علمًا بــأنَّ دعاء كانت تطبع 40 كلمة في الدقيقة عند بَدْء الدورة.

طريق التفوق في الرياضيات :

مهارات التفكير العليا 💶 (<u>صفحة 73)</u>

- $\int_{0}^{\pi/4} x \sin 5x \sin 3x \ dx = \frac{\pi-2}{16}$: ثَرِير: أُثِبِت أَنَّ:
- $x = 2 + e^{-x/2}$: نام المعادلة: a أَنْ شِت أَنَّ a أَنْ شِت أَنَّ مَان المعادلة: a أَنْ شِت أَنَّ مَان المعادلة: a أَنْ شِت أَنَّ مَان المعادلة: a
 - بطریقتین مختلفتین، مُبرِّرًا إجابتي. $\left(\ln x \right)^2 dx$: بریر: أجد: $\left(\ln x \right)^2 dx$



تبريسر: إذا كان الشكل المجاور يُمثِّل منحنى الاقتسران: $y = x e^{2x}$. ا فأجيب عن السؤالين الآتيين تباعًا: $-\frac{1}{2} \le x \le \frac{1}{2}$

- R_1 أجد مساحة كلَّ من المنطقة R_1 ، والمنطقة R_2
- (e-2): e أثبت أنَّ مساحة المنطقة R_1 إلى مساحة المنطقة و R_2 تساوي e

 $a \neq 0$ عدد صحيح موجب، و $a \neq 0$ ممّا يأتى، حيث: $a \neq 0$ عدد صحيح موجب، و

43
$$\int x^n \ln x \, dx = \frac{x^{n+1}}{(n+1)^2} (-1 + (n+1) \ln x) + C$$
 43 $\int x^n e^{ax} \, dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} \, dx$

$$\iint x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$

أسئلة إضافية من كتاب التمارين

التكامل بالأجزاء **Integration by Parts**

الدرس

أجد كُلًّا من التكاملات الآتية:

$$\int xe^{-x} dx$$

0795604563 ا.ایاد الحمد 835604563

د.خالد جلال 0799948198

ا.اباد الحمد 0795604563

د.خالد جلال 0799948198

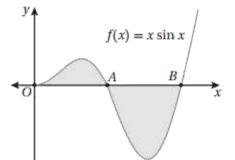
طريق التفوق في الرياضيات :

 $\int \ln x^3 dx$

أجد قيمة كلِّ من التكاملات الآتية:

 $\oint_0^{\pi} x \cos \frac{1}{4} x \ dx$

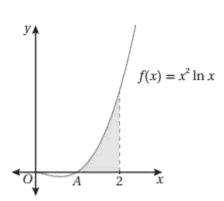
 $\int_{0}^{4} \ln x \, dx = 6 \ln 2 - 2$ أُثِبِت أَنَّ 13



 $x \ge 0$: ميث: $f(x) = x \sin x$ إذا كان الشكل المجاور يُمثِّل منحنى الاقتران فأجيب عن السؤالين الآتيين تباعًا:

(A) أجد إحداثيي كلِّ من النقطة A، والنقطة B.

أجد مساحة المنطقة المُظلَّلة.



 $x \ge 0$: حيث $f(x) = x^2 \ln x$ إذا كان الشكل المجاور يُمثِّل منحنى الاقتران فأجيب عن السؤالين الآتيين تباعًا:

16 أجد إحداثيي النقطة A.

أجد مساحة المنطقة المُظلّلة.

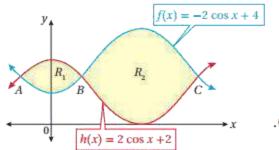
&

د. خالد جلال 0799948198 & 0799948198

طريق التفوق في الرياضيات:

المساحات والحجوم Areas and Volumes الدرس **5**

مسألة اليوم



مُعتمِدًا الشكل المجاور الذي يُبيِّن منحنيي $f(x) = -2\cos x + 4$ الاقترانين: $h(x) = 2\cos x + 2$

- أجد إحداثيي كلَّ من النقاط: A، وB، وC.
- R_{2} أجد مساحة كلِّ من المنطقة R_{1} ، والمنطقة عند المنطقة المن

الأمثلة و أتحقق من فهمي

مثال 1

- x=2 و x=0 ، و المستقيمين: g(x)=x و g(x)=x و g(x)=x و g(x)=x و المستقيمين: x=2
- $x = \frac{\pi}{2}$ و x = 0 و المستقيمين: $g(x) = \sin x$ و المستقيمين: $g(x) = \sin x$ و أجد المساحة المحصورة بين منحنيسي الاقترانيسن: $g(x) = \cos x$

<u>مُ اتحقُّق من فهمي (صفحة 77)</u>

- x=3 و x=0 و المستقيمين: $g(x)=x^2+1$ و $f(x)=\sqrt{x}$ و المستقيمين: x=3 و المستقيمين: x=3
- $x = \pi$ و x = 0 والمستقيمين: $g(x) = 2 \sin x$ و $g(x) = 2 \sin x$ و المستقيمين: $g(x) = 3 \sin x$

مثال 2

أجد مساحة المنطقة المحصورة بين منحنبي الاقترانين: $f(x) = \frac{1}{2}x^3$ ، و $g(x) = 4x - x^2$ في الربع الأوَّل من المستوى الإحداثي.

🌶 أتحقَّق من فهمي (<u>صفحة 79</u>)

g(x)=x+2 , $f(x)=x^2$. أجد مساحة المحصورة بين منحنيي الاقترانين

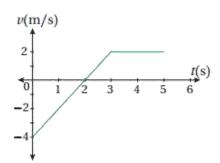
طريق التفوق في الرياضيات : د.خالد جلال 0799948198 & ا.اياد العمد 0795604563

طريق التفوق في الرياضيات:

مثال 3

يُبيِّن الشكل المجاور منحنى السرعة المتجهة يُبيِّن الشكل المجاور منحنى السرعة المتجهة x الزمن لجُسَيْم يتحرَّك على المحور x في الفترة الزمنية x [0, 5]. إذا بدأ الجُسَيْم الحركة من x عندما x فأجد كُلَّا ممّا يأتى:

- إزاحة الجُسَيْم في الفترة الزمنية المعطاة.
 - الموقع النهائي للجُسَيْم.

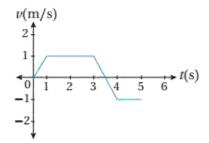


المسافة التي قطعها الجُسَيْم في الفترة الزمنية المعطاة.

<u>مفحة 81</u>) أتحقُّق من فهمي

يُبيِّن الشكل المجاور منحنى السرعة المتجهة – الزمن يُبيِّن الشكل المجاور منحنى السرعة المتجهة – الزمن لجُسَيْم يتحرَّك على المحور x في الفترة الزمنية t = 0 فأجد كُلًّا ممّا يأتى:

- إزاحة الجُسَيْم في الفترة الزمنية المعطاة.
- المسافة التي قطعها الجُسَيْم في الفترة الزمنية المعطاة.



الموقع النهائي للجُسَيْم.

مثال 4

x=2 إلى x=-1 والمحور x، من دوران المنطقة المحصورة بين منحنى الاقتران: $f(x)=e^x$ ، والمحور x، من x=1 إلى x=1 أجد حجم المُجسَّم الناتج من دوران المنطقة المحصورة بين منحنى الاقتران: x=1

🏄 اتحقُّق من فهمي 🔝 (<u>صفحة 82</u>)

x = 1: والمحور x، والمستقيمين $f(x) = \frac{1}{x}$ أجد حجم المُجسَّم الناتج من دوران المنطقة المحصورة بين منحنى الاقتران x = 1. والمستقيمين x = 1

مثال 5

أجد حجم المُجسَّم الناتج من دوران المنطقة المحصورة بين منحنبي الاقترانين: $g(x) = x^3$ ، و $g(x) = x^3$ ، في الربع الأوَّل من المستوى الإحداثي حول المحور x.

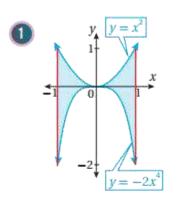
طريق التفوق في الرياضيات : د. خالد جلال 0799948198 & ا.اياد العمد 0795604563

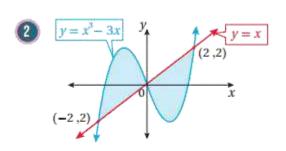
المنطق من فهمي (<u>صفحة 85)</u>

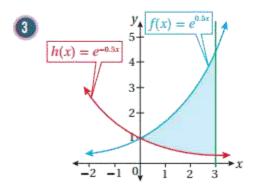
أجد حجم المُجسَّم الناتج من دوران المنطقة المحصورة بين منحنبي الاقترانين: $g(x) = x^2$ ، و $g(x) = x^2$ حول المحور x.

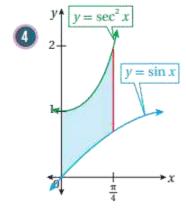
🔏 أَتَدَرَّبِ وَأَخَلُّ المسائل 💶 (<u>صفحة 85</u>)

أجد مساحة المنطقة المُظلَّلة في كلِّ من التمثيلات البيانية الآتية:





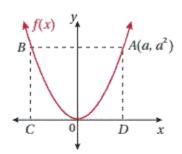




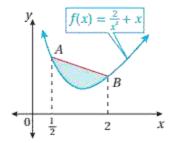
- $g(x) = 2x^2$ و $f(x) = \frac{1}{2}x^2 + 6$ أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين: 6 أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين: 6
- أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين: $f(x) = 4^x$ ، $g(x) = 3^x$ و المستقيم f(x) = 1
- . أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين: $g(x) = \cos x$ ، و $g(x) = \cos x$ ، والمستقيم $x = \frac{\pi}{2}$ ، في الربع الأوَّل $g(x) = \cos x$
 - $g(x) = x^4$ أجد المساحة المحصورة بين منحنيي الاقترانين: f(x) = |x|، و
 - $g(x) = -x^2 + 2x$ و $f(x) = 3x^3 x^2 10x$ أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين:

ا.ایاد العمد 0795604563 & د.خالد جلال 0799948198

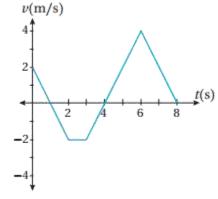
- x = 1 و x = 0 : والمستقيمين: $g(x) = x^2$ و $f(x) = e^x$ و $f(x) = e^x$ و المستقيمين: $g(x) = x^2$ و المستقيمين: $g(x) = x^2$
 - $h(x)=4\sqrt{x}$ و $f(x)=rac{1}{2}x^2$ أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين:
 - يُبيِّن الشكل التالي منحنى الاقتران: $f(x) = x^2$. إذا كان إحداثيا النقطة A هما $A(a, a^2)$ ، فأثبِت أنَّ مساحة المنطقة $A(a, a^2)$ المحصورة بين منحنى الاقتران $A(a, a^2)$ والقطعة المستقيمة \overline{AB} تساوي ثلثي مساحة المستطيل ABCD.



لكل x المحاور منحنى الاقتران: $x + x = \frac{2}{x^2} + x$. إذا كان الإحداثي x لكل المحاور منحنى النقطة A هو $\frac{1}{2}$ و a على الترتيب، فأجد مساحة المنطقة المحصورة بين المستقيم a ومنحنى الاقتران a.



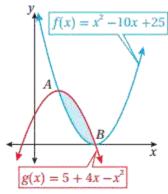
يُبِيِّن الشكل المجاور منحنى السرعة المتجهة – الزمن لجُسَيْم يتحرَّك على المحور x في الفترة الزمنية [0,8]. إذا بدأ الجُسَيْم الحركة من x=5 عندما t=0، فأجد كُلَّا ممّا يأتي:



- إذاحة الجُسَيْم في الفترة الزمنية المعطاة.
- المسافة التي قطعها الجُسَيْم في الفترة الزمنية المعطاة.
 - 🚯 الموقع النهائي للجُسَيْم.

 $f(x) = x^2 - 10x + 25$ يُبِيِّسن الشكل المجاور منحنيي الاقترانين: $g(x) = 5 + 4x - x^2$ و $g(x) = 5 + 4x - x^2$

- (1) أجد إحداثيي كلِّ من النقطة A، والنقطة B.
- أجد حجم المُجسَّم الناتج من دوران المنطقة المُظلَّلة حول المحور x.



د. خالد جلال 0799948198 & 0799948198

طريق التفوق في الرياضيات:

ا.اياد العمد 0795604563 & د.خالد جلال 0799948198 طريق التفوق في الرياضيات :

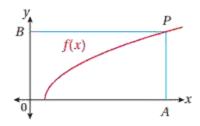
- $f(x) = \sqrt{\sin x}$ أجد حجم المُجسَّم الناتج من دوران المنطقة المحصورة بين منحنى الاقتران: $f(x) = \sqrt{\sin x}$ في الفترة $f(x) = \sqrt{\sin x}$ x والمحور x، حول المحور x.
- أجد حجم المُجسَّم الناتج من دوران المنطقة المحصورة بين منحنبي الاقترانين: $f(x) = \sqrt{x}$ ، و $g(x) = x^3$ حول أجد حجم المُجسَّم الناتج من دوران المنطقة المحصورة بين منحنبي الاقترانين: المحور X.
- (1) أجد حجم المُجسَّم الناتج ممن دوران المنطقة المحصورة بين منحني الاقتسران: f(x) = 1 + sec x، في الفترة x والمستقيم y = 3 والمستقيم $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

🥞 مهارات التفكير العليا

تبرير: أُجيب عن الأسئلة الثلاثة الآتية تباعًا:

- $y = x^{1/2}$ و $y = x^2$. و نبين منحنيي الاقترانين $y = x^2$ و $y = x^2$
 - $y = x^{1/3}$ و، $y = x^3$ أجد المساحة المحصورة بين منحنيي الاقترانين: $y = x^{1/3}$
- أجد مساحة المنطقة المحصورة بين منحنيي الاقترانيسن: $y = x^{n}$ ، و $y = x^{1/n}$ حدد صحيح أكبر من أو يساوي 2، مُبرِّرُا إجابتي.

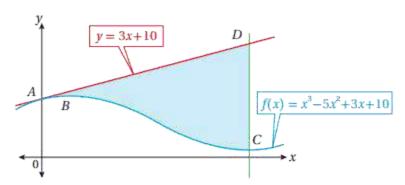
 $x \ge 1$: ميث الشكل المجاور منحنى الاقتران: $f(x) = \sqrt{2x-2}$ ، حيث الترير: يُبيِّن الشكل المجاور منحنى الاقتران إذا كانست النقطة P(9,4) تقع على منحنسي الاقتران f(x)، حيث P(9,4) يوازي المحور y، و \overline{PB} يوازي المحور x، فأجد كُلَّا ممّا يأتى:



- y = 4 مساحة المنطقة المحصورة بين منحنى الاقتران f(x)، والمستقيم والمحورين الإحداثيين.
- مساحة المنطقة المحصورة بين منحني الاقتران f(x)، والمستقيم x = 9، والمحور x.
- y = 5x = 6: والمستقيمين $f(x) = 2\sqrt{x-2}$ والمستقيمين $f(x) = 2\sqrt{x-2}$ f(x)و 5 y=5. أجد حجم المُجسَّم الناتج من دوران المنطقة حول المحور x، مُبرِّرًا إجابتي.

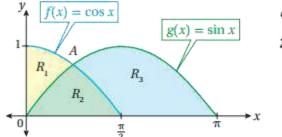
طريق التفوق في الرياضيات:

تبرير: يُبيِّن الشكل المجاور منحنى كلِّ من $f(x) = x^3 - 5x^2 + 3x + 10$ الاقتران: y = 3x + 10 والمستقيم: y = 3x + 10 المستقيم ومنحنى الاقتران بالنقطة A الواقعة على المحور y, وكان للاقتران f(x) قيمة عظمى محلية عند النقطة a, وقيمة صغرى محلية عند



النقطة C، وقطع الخطُّ الموازي للمحور y والمارُّ بالنقطة C المستقيمَ: y = 3x + 10 في النقطة D؛ فأُجيب عن الأسئلة الثانة الآتية تباعًا:

- (28) أجد إحداثيات كلِّ من النقطة B، والنقطة C.
- أُثبِت أنَّ \overline{AD} مماس لمنحنى الاقتران f(x) عند النقطة A، مُبرِّرًا إجابتي.
 - أجد مساحة المنطقة المُظلّلة، مُبرّرًا إجابتي.



 $f(x) = \cos x$: تبرير: يُبيِّن الشكل المجاور منحني الاقترانين: $h(x) = \sin x$ و $\sin x$ و $\sin x$ ا أجيب عن الأسئلة الثلاثة الآتية تباعًا:

- (13 أجد إحداثبي النقطة A.
- R_1, R_2, R_3 : أجد مساحة كلِّ من المناطق أجد مساحة كلِّ
- $\sqrt{2}:2:$ گأبِت أنَّ مساحة المنطقة R_1 إلى مساحة المنطقة R_2 تساوي: $\sqrt{2}:2:$

y y = x' (1, 1)

y=x': يُبِيِّن الشكل المجاور المنطقة R المحصورة بين منحنى الاقتران: y=x' حيث: 1>1 والمحور x، ومماس منحنى الاقتران عند النقطة (1,1):

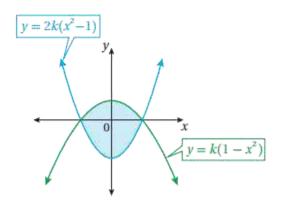
- $(\frac{r-1}{r},0)$ أُثِبِت أنَّ مماس منحنى الاقتران يقطع المحور x عند النقطة $(\frac{r-1}{r},0)$.
- أستعمل النتيجة من الفرع السابق لإثبات أنَّ مساحة المنطقة R هي $\frac{r-1}{2r(r+1)}$
 - أجد قيمة الثابت r التي تجعل مساحة المنطقة R أكبر ما يُمكِن.

د.خالد جلال 0799948198 & ا.ایاد العمد 0799948198

طريق التفوق في الرياضيات :

تحـــدٌ: إذا كان العمودي على المماس لمنحنى الاقتران: $f(x) = x^2 - 4x + 6$ عند النقطة f(x) يقطع منحنى الاقتران مَرَّة أُخرى عند النقطة f(x) ، فأجد كُلًّا ممّا يأتى:

- (37 إحداثيات النقطة P.
- هساحة المنطقة المحصورة بين منحنى الاقتران (x) والعمودي على المماس، مُقرِّبًا إجابتي إلى أقرب 3 منازل عشرية.

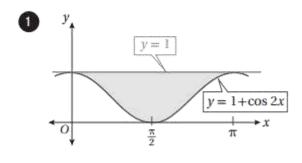


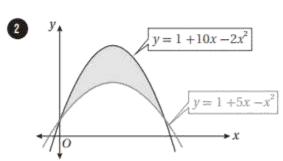
x = -1 المنطقة المُظلَّلة في الشكل المجاور محصورة بين قطعين مكافئين، يقطع كلَّ منهما المحور x عندما $y = 2k(x^2 - 1)$ و $y = 2k(x^2 - 1)$ و كانت معادلتا القطعين هما: $y = k(1 - x^2)$ و كانت مساحة المنطقة المُظلَّلة هي $y = k(1 - x^2)$ و حدات مربعة، فأجد قيمة الثابت y = k.

أسئلة إضافية من كتاب التمارين

المساحات والحجوم Areas and Volumes الدرس =

أجد مساحة المنطقة المُظلَّلة في كلِّ من التمثيلات البيانية الآتية:

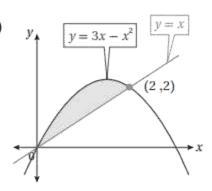




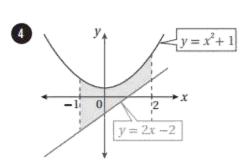
طريق التفوق في الرياضيات :

ا.اباد العمد 0795604563

طريق التفوق في الرياضيات :

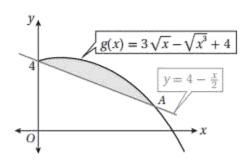


&



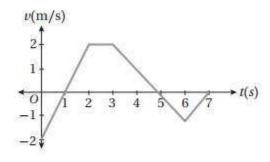
- g(x) = 2 x و $f(x) = x^2$ أجد مساحة المنطقة المحصورة بين منحنيى الاقترانين:
- x=2 أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين: $\frac{1}{x}=\frac{1}{x}$ ، و والمستقيم $g(x)=\frac{1}{x}$
- x = 0 : والمستقيمين $g(x) = 1 \cos x$ و $g(x) = 1 \cos x$ والمستقيمين $g(x) = 1 \cos x$ $x = \pi$

د.خالد جلال 0799948198



 $g(x) = 3\sqrt{x} - \sqrt{x^3} + 4$ يُبِيِّن الشكل المجاور منحنى الاقتران: والمستقيم $y = 4 - \frac{x}{2}$. مُعتمِدًا هذا الشكل، أُجيب عن السؤالين الآتيين تىاغًا:

- اجد إحداثيي النقطة A.
- أجد مساحة المنطقة المُظلّلة.

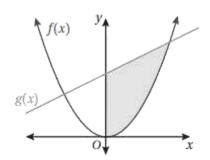


يُبيِّن الشكل المجاور منحني السرعة المتجهة - الزمن لجُسَيْم يتحـر ك على المحور x في الفترة الزمنية [0,7]. إذا بدأ الجُسَيْم الحركة من x = 2 عندما t = 0، فأجد كُلًا ممّا يأتى:

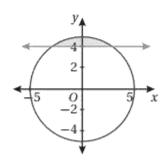
- ازاحة الجُسَيْم في الفترة الزمنية المعطاة.
- 11 المسافة التي قطعها الجُسَيْم في الفترة الزمنية المعطاة.
 - الموقع النهائي للجُسَيْم.

ا.اياد الحمد 0795604563 & د.خالد جلال 0799948198

طريق التفوق في الرياضيات :



- $g(x) = \frac{1}{2}x + 3$ و $f(x) = \frac{1}{2}x^2$ أيبيِّن الشكل المجاور منحنيي الاقترانين: 13 $g(x) = \frac{1}{2}x + 3$ أجد حجم المُجسَّم الناتج من دوران المنطقة المُظلَّلة حول المحور x.
- (x) والمحور $f(x) = \sqrt{\ln x}$ الأقتــران: $f(x) = \sqrt{\ln x}$ أجــد حجم المُجسَّــم الناتج مــن دوران المنطقة المحصــورة بين منحنــي الاقتــران $x = e^3$ $x = e^3$ $x = e^3$
- ولا $g(x) = x^2$ من دوران المنطقة المحصورة بين منحنبي الاقترانيسن: $f(x) = \sqrt{2x}$ ، و $g(x) = x^2$ مول المحور x.



لَهُ الْمُطَلِّلُ المجاور دائرة معادلتها: 25 $x^2 + y^2 = 25$. إذا دار الجزء المُطَلَّل المجاور دائرة معادلتها: 25 المحصور بين الدائرة والمستقيم y=4 حول المحور x لتشكيل مُجسَّم، فأجد حجم المُجسَّم الناتج، مُبرِّرًا إجابتي.

طريق التفوق في الرياضيات:

المعادلات التفاضلية **Differential Equations**

الدرس

مسألة اليوم

تتغيَّر درجة حرارة سائل كيميائي بارد، بعد وضعه في غرفة دافثة، بمُعدَّل يُمكِن نمذجته بالمعادلة التفاضلية: $\frac{dA}{dt} = 2(20 - A)$ ، حيث A درجة حرارة السائل بمقياس سيلسيوس، و t الزمن بالساعات:

- أحُلَّ المعادلة التفاضلية لإيجاد درجة حرارة السائل بعد t ساعة، علمًا بأنَّ درجة حرارته عند وضعه في الغرفة هي 5°C.
 - 2) بعد كم ساعةً تصبح درجة حرارة السائل 18°C؟

الأمثلة و أتحقق من فهمي

مثال 1

أُحدِّد إذا كان الاقتران المعطى حلَّا للمعادلة التفاضلية: y' + y = 0 في كلِّ ممّا يأتي:

$$y = e^{-x}$$

$$y = 2 \cos x$$

🌶 اتحقَّق من فهمي (<u>صفحة 92</u>)

أُحدِّد إذا كان الاقتران المعطى حلَّل للمعادلة التفاضلية: y'' - 4y' + 3y = 0 في كلِّ ممّا يأتي:

a)
$$y = 4e^x + 5e^{3x}$$

b)
$$y = \sin x$$

مثال 2

 $\frac{dy}{dx} = e^x - 6x^2$. أجد الحلَّ العام للمعادلة التفاضلية: $\frac{dy}{dx} = e^x - 6x^2$. ثم أجد الحلَّ العام للمعادلة التفاضلية:

ا.اياد الحمد 0795604563 & د.خالد جلال 0799948198 طريق التفوق في الرياضيات :

🍂 أتحقُّق من فهمى 🌎 (صفحة 94)

أجد الحلَّ العام للمعادلة التفاضلية: $\frac{dy}{dx} = 5\sec^2 x - \frac{3}{2}\sqrt{x}$ ، ثم أجد الحلَّ الخاص لها الذي يُحقِّق النقطة (0,7).

مثال 3

أُحُلُّ كُلًّا من المعادلات التفاضلية الآتية:

3)
$$\frac{dy}{dx} = \frac{8x^3}{4y - \sin y}$$
 4) $(1 + x^3) \frac{dy}{dx} = x^2 \tan y$

$$\frac{dy}{dx} = \frac{8x^3}{4y - \sin y}$$

🏄 أتحقُّق من فهمى (صِفحة 96)

أحُلُّ كُلًّا من المعادلات التفاضلية الآتية:

b)
$$\frac{dy}{dx} = 2x - xe^y$$

d)
$$\sin^2 x \frac{dy}{dx} = y^2 \cos^2 x$$

a) $\frac{dy}{dx} = \frac{2x}{v^4}$

c) $\frac{dy}{dx} = \frac{x \sin x}{y}$

مثال 4

أجد الحلَّ الخاص الذي يُحقِّق الشرط الأوَّلي المعطى لكل معادلة تفاضلية ممّا يأتي:

$$\frac{dy}{dx} = e^{x-y}, y(0) = 2$$

🎤 اتحقّٰق من فهمي (صفحة 98)

أجد الحلَّ الخاص الذي يُحقِّق الشرط الأوَّلي المعطى لكل معادلة تفاضلية ممّا يأتي:

a)
$$\frac{dy}{dx} = xy^2 e^{2x}, y(0) = 1$$

&

b)
$$\frac{dy}{dx} = y \cos x, y\left(\frac{\pi}{2}\right) = 1$$

مثال 5

يتحـرَّك جُسَيْم في مسار مستقيم، وتعطي سرعته المتجهة بالمعادلة التفاضلية: و موقع الجُسَيْم بالأمتار. أجد موقع الجُسَيْم بالأمتار. أجد موقع $\frac{ds}{dt} = -s^2 \ln(t+1)$.s(0) = 0.5 الجُسَيْم بعد 3 ثوانِ من بَدْء الحركة، علمًا بأنَّ .s(0) = 0.5

طريق التفوق في الرياضيات:

د.خالد جلال 0799948198

طريق التفوق في الرياضيات:

႔ اُتحقَّق من فهمي (<u>صفحة 100)</u>

 $\frac{ds}{dt} = st\sqrt{t+1}$ يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالمعادلة التفاضلية: $t = st\sqrt{t+1}$ حيث t الزمن بالثواني، وt موقع الجُسَيْم بالأمتار. أجد موقع الجُسَيْم بعد t ثوانٍ من بَدْء الحركة، علمًا بأنَّ t = st.

🥑 مثال 6 : من الحياة

أمراض: انتشر مرض الحصبة في إحدى المدارس بمُعدَّل يُمكِن نمذجته بالمعادلة التفاضلية: $\frac{ds}{dt} = \frac{s(1050-s)}{5000}$ ، حيث s عدد الطلبة المصابين بعد t يومًا من اكتشاف المرض:

- أحُلُ المعادلة التفاضلية لإيجاد عدد الطلبة المصابين بعد ٤ يومًا، علمًا بأنَّ عدد الطلبة المصابين عند اكتشاف المرض هو 50 طالبًا.
 - بعد كم يومًا يصبح عدد الطلبة المصابين 350 طالبًا؟

🏄 أتحقُّق من فهمي (<u>صفحة 102)</u>

غزلان: يُمكِن نمذجة مُعدَّل تغيُّر عدد الغزلان في إحدى الغابات بالمعادلة التفاضلية: P(1000-P) ، حيث P عدد الغزلان في الغابة بعد t سنة من بَدْء دراسة عليها:

- أحُلُّ المعادلة التفاضلية لإيجاد عدد الغزلان في الغابة بعد t سنة من بَدْء الدراسة، علمًا بأنَّ عددها عند بَدْء الدراسة هو 2500 غزال.
 - ل بعد كم سنة يصبح عدد الغزلان في الغابة 1800 غزال؟

أتدرَّب وأخلُّ المسائل 🚺 🚺

أُحدُّد إذا كان الاقتران المعطى حلَّا للمعادلة التفاضلية في كلِّ ممّا يأتي:

2
$$y = x \ln x - 5x + 7; y'' - \frac{1}{x} = 0$$

- 3 $y = \tan x$; $y' + y^2 = 1$

طريق التفوق في الرياضيات :

أحُلُّ كُلًّا من المعادلات التفاضلية الآتية:

$$\frac{dy}{dx} = \cos x \sin y$$

$$\frac{dy}{dx} = \frac{3x^2 \sin^2 y}{x^3 + 2}$$

$$\frac{dy}{dx} = y^3 \ln x$$

$$\frac{dy}{dx} = 2x^3 (y^2 - 1)$$

$$\int y \frac{dy}{dx} = \sin^3 x \cos^2 x$$

$$\frac{dy}{dx} = \sqrt{xy}$$

(8)
$$(2x+1)(x+2)\frac{dy}{dx} = -3(y-2)$$

أجد الحلُّ الخاص الذي يُحقِّق الشرط الأوَّلي المعطى لكلِّ من المعادلات التفاضلية الآتية:

(19)
$$\frac{dy}{dx} = y^2 \sqrt{4-x}$$
; $y(1) = 2$

$$\frac{dy}{dx} = \frac{2\sin^2 x}{y}; y(0) = 1$$

a
$$\frac{dy}{dx} = 2\cos^2 x \cos^2 y$$
; $y(0) = \frac{\pi}{4}$

$$\frac{dy}{dx} = \frac{\cos x \ e^{\sin x}}{e^y}; y(\pi) = 0$$

$$\frac{dy}{dx} = \frac{8x - 18}{(3x - 8)(x - 2)}; y(3) = 8$$

$$\frac{dy}{dx} = \frac{1}{xy}; y(e) = 1$$

تتحرَّك سيّارة في مسار مستقيم، ويعطى تسارعها بالمعادلة التفاضلية: 0.5v = 10 - 0.5v، حيث t الزمن بالثواني، وv سـرعتها المتجهة بالمتر لكل ثانية. أجد السرعة المتجهة للســيّارة بعد t ثانية من بَدْء حركتها، علمًا بأنَّ السيّارة تحرَّكت من وضع السكون.

نمكن نمذجة مُعدَّل تغيُّر عدد الذئاب في إحدى الغابات بالمعادلة التفاضلية: $\frac{dN}{dt} = 260 - 0.4N$ عدد الذئاب في الغابة بعد t سنة من بَدْء دراسة عليها. أجد عدد الذئاب في الغابة بعد t سنوات من بَدْء الدراسة، علمًا بأنَّ عددها عند بَدْء الدراسة هو 300 ذئب.

كسرة: تنكمش كرة، ويتغيَّر نصف قُطْرها بمُعدَّل يُمكِن نمذجت بالمعادلة التفاضلية: $\frac{dr}{dt} = -0.0075r^2$ ، حيث r طول نصف قُطْر الكرة بالسنتيمتر، وt الزمن بالثواني بعد بَدْء انكماش الكرة:

20 cm أَحُلُّ المعادلة التفاضلية لإيجاد طول نصف قُطْر الكرة بعد t ثانية ، علمًا بأنَّ طول نصف الكرة الابتدائي هو

(38) بعد كم ثانية يصبح طول نصف قُطْر الكرة 10 cm?

 $\frac{dn}{dt} = 0.2n(0.2 - \cos t)$: يتغيَّر عدد الحشرات في مجتمع للحشرات بمُعدَّل يُمكِن نمذجته بالمعادلة التفاضلية: t عدد الحشرات، وt الزمن بالأسابيع بعد بَدْء ملاحظة الحشرات:

- أخلُّ المعادلة التفاضلية لإيجاد عدد الحشرات في هذا المجتمع بعد t أسبوعًا، علمًا بأنَّ عددها الابتدائي هو 400 حشرة.
 - 🔞 أجد عدد الحشرات في هذا المجتمع بعد 3 أسابيع.
- أنَّ تُمثَّل المعادلة التفاضلية: $\frac{dy}{dx} = y \cos x$ ميل المماس لمنحنى علاقة ما. أجد قاعدة هذه العلاقة إذا علمْتُ أنَّ منحناها يمرُّ بالنقطة (0,1).
- يًّ مُثِّل المعادلة التفاضلية: $x(x+1)\frac{dy}{dx}=y$ ميل المماس لمنحنى علاقة ما. أجد قاعدة هذه العلاقة إذا علمْتُ أنَّ منحناها يمرُّ بالنقطة (1,3).

مهارات التفكير العليا مهارات التفكير العليا 🐪 (صفحة 104)

نحدِّ: أحُلُّ كُلًّا من المعادلات التفاضلية الآتية:

33
$$\frac{dy}{dx} = \frac{x}{y^2} - xy - \frac{1}{y^2} + y$$
 34 $\frac{dy}{dx} = \frac{x}{2y - 1} - \frac{2x}{3y - 2}$

$$35 \frac{dy}{dx} = 1 + \tan^2 x + \tan^2 y + \tan^2 x \tan^2 y$$

تبرير : يُمكِن نمذجة مُعدَّل تحلُّل مادة مُشِعَّة بالمعادلة التفاضلية : x حيث x الكتلة المتبقية من المادة المُشِعَّة بالمليغرام بعد t يومًا، و x

- . أُثْبِت أَنَّه يُمكِن كتابة الحلِّ العام للمعادلة التفاضلية في صورة: $x=ae^{-\lambda t}$ ، حيث a ثابت، مُبرَّرًا إجابتي.
- نَّا إذا كان عمر النصف للمادة المُشِعَّة هو الوقت اللازم لتحلُّل نصف هذه المادة، وa كتلة المادة الابتدائية، فأُثبِت أنَّ عمر النصف للمادة المُشِعَّة هو $\frac{\ln 2}{\lambda}$ ، مُبرِّرًا إجابتي.

تبرير: تُمثِّل المعادلة التفاضلية: $\frac{dy}{dx} = -\frac{2x}{3v}$ ميل المماس لمنحنى علاقة ما:

- أجــد قيمة n التي تجعل العلاقة: $x^2 + ny^2 = a$ حــلًا للمعادلة التفاضلية المعطاة، حيث a ثابت اختياري، مُبرَّرًا aإجابتي.
 - 39 أجد إحداثيي نقاط تقاطع منحني العلاقة مع المحور x إذا علمْتُ أنَّ منحناها يمرُّ بالنقطة (5, 4)، مُبرِّرًا إجابتي.

أسئلة إضافية من كتاب التمارين

المعادلات التفاضلية **Differential Equations**

أَحُلُّ كُلًّا من المعادلات التفاضلية الآتية:

$$\frac{dy}{dx} = \frac{y^2 - 4}{x}$$

$$3 \frac{dy}{dx} = e^{x+y}$$

$$\frac{dy}{dx} = \frac{x \sec y}{y e^{x^2}}$$

أجد الحلُّ الخاص الذي يُحقِّق الشرط الأوَّلي المعطى لكل معادلة تفاضلية ممّا يأتي:

$$\frac{dy}{dx} = xe^{-y}, y(4) = \ln 2$$

$$\frac{dy}{dx} = (3x^2 + 4)y^2; y(2) = -0.1$$

د. خالد جلال 0795604563 & الياد العمد 0799948198

طريق التفوق في الرياضيات:

y حيث $\frac{dy}{dt} = \frac{1}{2} y^{0.8}$: يتغيَّر عدد الخلايا البكتيرية في مجتمع بكتيري بمُعلَّل يُمكِن نمذجته بالمعادلة التفاضلية: $y^{0.8}$ عدد الخلايا، وt الزمن بالأيام:

- أحُلُّ المعادلة التفاضلية لإيجاد عدد الخلايا البكتيرية في هذا المجتمع بعد t يومًا، علمًا بـأنَّ عددها الابتدائي هو 100000 خلية.
 - 4 أجد عدد الخلايا البكتيرية في هذا المجتمع بعد أسبوع.
- v = v تتحرِّك سيّارة في مسار مستقيم، ويعطى تسارعها بالمعادلة التفاضلية: v = v الزمن بالثواني، و v = v الزمن بالثواني، و v = v تتحرِّك سيّارة في مسار مستقيم، ويعطى تسارعة المتجهة للسيّارة بعد v = v ثانية من بَدْء حركتها، علمًا بأنَّ سرعتها المتجهة الابتدائية هي v = v 100.
- ميل المماس لمنحنى علاقة ما. أجد قاعدة هذه العلاقة إذا علمْتُ $e^y \frac{dy}{dx} = 10 + 2\sec^2 x$ ميل المماس لمنحنى علاقة ما. أجد قاعدة هذه العلاقة إذا علمْتُ أنَّ منحناها يمرُّ بالنقطة $\left(\frac{\pi}{4},0\right)$.
- أنَّ منحناها أجد قاعدة هذه العلاقة إذا علمتُ أنَّ منحناها $\frac{dy}{dx} + \frac{y}{x} = 0$ علمتُ أنَّ منحناها يمرُّ بالنقطة (6, 4).

اختيار نماية الوحدة

أجد كُلًّا من التكاملات الآتية:

$$\int \frac{1}{\sqrt{e^x}} dx$$

$$\int \csc^2 x \left(1 + \tan^2 x\right) dx$$

$$9 \int \frac{2x^2 + 7x - 3}{x - 2} dx$$

10
$$\int \sec^2(2x-1) \ dx$$

$$11 \int \cot (5x+1) \ dx$$

$$\int_0^{\pi/2} \sin x \, \cos x \, dx$$

13
$$\int_{0}^{\pi} \cos^2 0.5x \ dx$$

$$\int_{0}^{2} |x^{3} - 1| dx$$

15
$$\int_0^{\pi/4} (\sec^2 x + \cos 4x) \ dx$$

16
$$\int_0^{\pi/3} \left(\sin \left(2x + \frac{\pi}{3} \right) - 1 + \cos 2x \right) dx$$

$$\int_{0}^{\pi/8} \sin 2x \cos 2x \ dx$$

$$\int \frac{4}{x^2 - 4} \ dx$$

18
$$\int \frac{4}{x^2 - 4} dx$$
 19 $\int \frac{x + 7}{x^2 - x - 6} dx$

20
$$\int \frac{x-1}{x^2-2x-8} dx$$
 21 $\int \frac{x^2+3}{x^3+x} dx$

$$\int \frac{x^2 + 3}{x^3 + x} \ dx$$

22
$$\int \frac{1}{x^2 (1-x)} dx$$

22
$$\int \frac{1}{x^2(1-x)} dx$$
 23 $\int \frac{\sin x}{\cos^2 x - 3\cos x} dx$

$$24 \int \frac{\sqrt{x}}{x-4} \ dx$$

أختار رمز الإجابة الصحيحة في كلِّ ممّا يأتي:

: هي
$$\int_{0}^{2} e^{2x} dx$$
 هي

a)
$$e^4 - 1$$

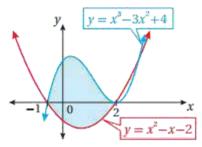
b)
$$e^4 - 2$$

c)
$$2e^4 - 2$$

c)
$$2e^4 - 2$$
 d) $\frac{1}{2}e^4 - \frac{1}{2}$

:
$$\int_{-4}^{4} (4 - |x|) dx$$
 : $\int_{-4}^{4} (4 - |x|) dx$

 (3) يُبيِّن الشكل الآتي المنطقة المحصورة بين منحني الاقترانين: $y = x^2 - x - 2$ و $y = x^3 - 3x^2 + 4$ في الفترة [-1, 2].



التكامل المحدود الذي يُمكِن عن طريقه إيجاد مساحة المنطقة المُظلَّلة هو:

a)
$$\int_{-1}^{2} (x^3 - 4x^2 + x + 6) dx$$

b)
$$\int_{-1}^{2} (-x^3 + 4x^2 - x - 6) dx$$

c)
$$\int_{-1}^{2} (x^3 - 4x^2 - x + 2) dx$$

d)
$$\int_{-1}^{2} (x^3 - 2x^2 - x + 2) dx$$

الذي تُحقِّقه النقطة
$$\frac{dy}{dx} = 2xy$$
 الذي تُحقِّقه النقطة $\frac{dy}{dx} = 0$ الذي $\frac{dy}{dx} = 0$ الذي أدم النقطة النقطة

a)
$$y = e^{x^2}$$
 b) $y = x^2 y$

د.خالد جلال 0799948198

b)
$$y = x^2 y$$

c)
$$y = x^2 y + 1$$

c)
$$y = x^2 y + 1$$
 d) $y = \frac{x^2 y^2}{2 + 1}$

طريق التفوق في الرياضيات:

 $\int \sec^2 x \, \tan x \sqrt{1 + \tan x} \, dx$

26
$$\int \frac{x}{\sqrt[3]{4-3x}} dx$$
 27 $\int \frac{(\ln x)^6}{x} dx$

28
$$\int (x+1)^2 \sqrt{x-2} \ dx$$
 29 $\int x \csc^2 x \ dx$

30
$$\int (x^2 - 5x) e^x dx$$
 31 $\int x \sin 2x dx$

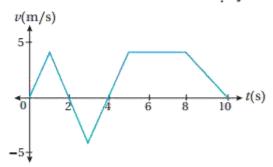
أجد قيمة كلٌّ من التكاملات الآتية:

32
$$\int_0^1 t 3^{t^2} dt$$
 33 $\int_{\pi/4}^{\pi/3} \cot^3 x \ dx$

34
$$\int_{-\pi}^{\pi} \frac{\cos x}{\sqrt{4+3\sin x}} dx$$
 35 $\int_{-1}^{0} \frac{x^2-x}{x^2+x-2} dx$

36
$$\int_{1}^{2} \frac{32x^2 + 4}{16x^2 - 1} dx$$
 37 $\int_{1/2}^{e/2} x \ln 2x dx$

يُبيِّن الشكل الآتي منحنى السرعة المتجهة — الزمن لجُسَيْم يبيِّن الشكل الآتي منحنى السرعة الزمنية [0, 10]. إذا بدأ يتحرَّك على المحور x في الفترة الزمنية t=0 في الأسئلة الجُسَيْم الحركة من x=0 عندما t=0 فأُجيب عن الأسئلة الثلاثة التالية تباعًا:

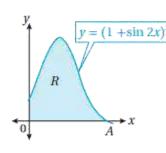


- 38 أجد إزاحة الجُسَيْم في الفترة الزمنية المعطاة.
- آجد المسافة التي قطعها الجُسَيْم في الفترة الزمنية المعطاة.
 - 40 أجد الموقع النهائي للجُسَيْم.

- الاقترانين: أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين: $g(x) = x^2$ و $f(x) = \sqrt{x}$
- أجد المساحة المحصورة بين منحنيي الاقترانين: g(x) = x , $f(x) = x^3$
- (43) أجد مساحة المنطقة المحصورة بين منحنيي الاقترانين: $g(x) = x^2 + 2$ و f(x) = -x . x = 2 و x = -2
 - $\int_{2}^{5} \frac{x^{2}}{x^{2} 1} dx = 3 + \frac{1}{2} \ln 2 : \mathring{0}$

يتحرَّك جُسَيْم في مسار مستقيم، وتعطى سرعته المتجهة بالاقتران: $\frac{t}{9} - \frac{1}{\sqrt{t+6}}$ الزمن بالثواني، و $v(t) = \frac{t}{9}$ سرعته المتجهة بالمتر لكل ثانية:

- 45 أجد إزاحة الجُسَيْم في الفترة [1, 10].
- هُ أجد المسافة الكلية التي قطعها الجُسَيْم في الفترة [1, 10].



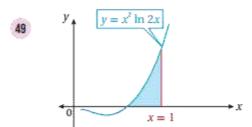
 $y = (1 + \sin 2x)^2$ يُمثِّل الشكل المجاور منحنى الاقتران:

 $y = (1 + \sin 2x)^{2}$ $0 \le x \le \frac{3\pi}{4}$

- 47 أجد إحداثيي النقطة A.
- 48 أجد مساحة المنطقة R.

طريق التفوق في الرياضيات :

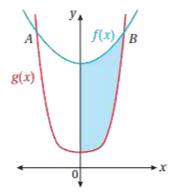
أجد مساحة المنطقة المُظلَّلة في كلِّ من التمثيلين البيانيين الآتيين:



$$f(x) = \frac{1}{16} x^{2}$$

$$g(x) = 2\sqrt{x}$$

 $f(x) = x^2 + 14$: يُبيِّن الشكل الآتي منحنيي الاقترانين $g(x) = x^4 + 2$ و



- آذا كان منحنيا الاقترانين يتقاطعان في النقطة A والنقطة B، فأجد إحداثين نقطتي التقاطع.
- 52 أجد حجم المُجسَّم الناتج من دوران المنطقة المُظلَّلة حول المحور x.
- أجد حجم المُجسَّم الناتج من دوران المنطقة المحصورة x أجد حجم الأقتران: x الاقتران: x والمحور x والمستقيمين: x والمستقيمين: x والمستقيمين: x والمستقيمين: x

أَحُلُّ كُلًّا من المعادلات التفاضلية الآتية:

54
$$\frac{dy}{dx} = \frac{\sqrt{y}}{x}$$
 55 $\frac{dy}{dx} = xe^x \sec y$

56
$$3y^2 \frac{dy}{dx} = 8x$$
 57 $x \frac{dy}{dx} = 3x\sqrt{y} + 4\sqrt{y}$

أجد الحلَّ الخاص الذي يُحقِّق الشرط الأوَّلي المعطى لكل معادلة تفاضلية ممّا يأتي:

58
$$\frac{dy}{dx} + 4y = 8$$
; $y(0) = 3$

$$\frac{dy}{dx} = \frac{5e^y}{(2x+1)(x-2)}; y(-3) = 0$$

أسماك: يتغيَّر عدد الأسماك في إحدى البحيرات بمُعدَّل x يُمكِن نمذجته بالمعادلة التفاضلية: $\frac{dx}{dt} = 0.2x$ ، حيث $\frac{dx}{dt}$ عدد الأسماك، وt الزمن بالسنوات منذ هذه السنة:

- 60 أحــلُّ المعادلــة التفاضلية لإيجاد عدد الأســماك في البحيرة بعد t سنة، علمًا بأنَّ عددها هذه السنة هو 300 سمكة.
 - 61 أجد عدد الأسماك في البحيرة بعد 5 سنوات.
- ربالدينار) من مُتَسَج مُعيَّن، حيث x عدد القطع المَبيعة الواحدة (بالدينار) من مُتَسَج مُعيَّن، حيث x عدد القطع المَبيعة من المُتتَج بالمثات. إذا كان: $\frac{-300\,x}{\sqrt{(9+x^2)^3}}$ هو مُعدَّل التغيُّر في سعر القطعة الواحدة من المُتتَج، فأجد (p(x)) علمًا بأنَّ سعر القطعة الواحدة هو 75 JD فأجد عندما يكون عدد القطع المَبيعة من المُتتَج 400 قطعة.

إجابات وحدة التكامل تتضمن كتاب الطالب و كتاب الطالب و كتاب الطالب و كتاب التمارين

ين إلوط	ـــــــــــــــــــــــــــــــــــــ
tional Cem	$P(t) = \int (200e^{0.1t} + 150e^{-0.03t})dt = \frac{200}{0.1}e^{0.1t} + \frac{150}{-0.03}e^{-0.03t} + C$
	$=2000e^{0.1t}-5000e^{-0.03t}+C$
	P(0) = 2000 - 5000 + C
	$200000 = -3000 + C \Longrightarrow C = 203000$
Dan Hiller	$P(t) = 2000e^{0.1t} - 5000e^{-0.03t} + 203000$
عورالشاه	$P(12) = 2000e^{1.2} - 5000e^{-0.36} + 203000 \approx 206152$
tional Cent	إذن، سيكون عدد الخلايا بعد 12 يومًا 206152 خلية تقريبًا. National Cente
7	اتحقق من فهمي صفحة 10
а	$\int (5x^2 - 3e^{7x})dx = \frac{5}{3}x^3 - \frac{3}{7}e^{7x} + C$
b	$\int_0^{\ln 3} 8e^{4x} dx = \frac{8}{4} e^{4x} \bigg _0^{\ln 3} = 2(e^{4 \ln 3} - e^0) = 2(e^{\ln 3^4} - e^0)$
tional Cent	National Center Nation = 2(81 - 1) = 160 tional Cen
С	$\int \sqrt{e^{1-x}} dx = \int (e^{1-x})^{1/2} dx = \int e^{(1-x)/2} dx = -2e^{(1-x)/2} + C$
d	$\int (3^{x} + 2\sqrt{x})dx = \frac{3^{x}}{\ln 3} + 2(\frac{2}{3}x^{\frac{3}{2}}) + C = \frac{3^{x}}{\ln 3} + \frac{4}{3}x^{\frac{3}{2}} + C$
Bulliff r	الساكة المنظن من فهمي صفحةً 12 السطان من السطان من ألا
3	$\int \cos(3x-\pi) dx = \frac{1}{3}\sin(3x-\pi) + C$
b	$\int (\csc^2(5x) + e^{2x})dx = -\frac{1}{5}\cot 5x + \frac{1}{2}e^{2x} + C$

4	0795604	ا.ایاد العمد 563	ه جلال 0799948198	ت : د.خال	طريق التفوق في الرياضيا
		$\int \frac{dx}{1 + \cos x}$	$= \int \left(\frac{1}{1+\cos x} \times \frac{1-\alpha}{1-\alpha}\right)$	$\frac{\cos x}{\cos x}dx$	
		22	$= \int \frac{1 - \cos x}{\sin^2 x} dx$		
	tional Cent	1000	$= \int (\csc^2 x - \cot x \csc x)$		A STATE OF THE PARTY OF THE PAR
			$= -\cot x + \csc x + C$		
			ىن قهمي صفحة 16	أتحقق	
	a	$\int \left(\sin x - \frac{5}{x}\right)$	$dx = -\cos x - 5\ln $	x + C	عراله طني
	b	$\int \frac{5}{3x+2} dx$	$= \frac{5}{3} \int \frac{3}{3x+2} dx = \frac{5}{3} I$	$\mathbf{n} 3x+2 +C$	National Cer
	С	$\int \frac{x^2 - 7x + x^2}{x^2}$	$\frac{2}{x}dx = \int \left(1 - \frac{7}{x} + 2x\right)$	$-2\bigg)dx=x-7$	$\ln x -2x^{-1}+C$
	d	$\int \frac{2x+3}{x^2+3x} dx$	$x = \ln x^2 + 3x + C$		
		$\int \frac{\sin 2x}{1 + \cos 2x}$	$dx = -\frac{1}{2} \int \frac{-2 \sin 2x}{1 + \cos 2x}$	$\frac{x}{x}dx$	
	e		$=-\frac{1}{2}\ln 1+\cos 2$	x +C	
			$=-\frac{1}{2}\ln(1+\cos t)$	(2x) + C	
1	f	$\int \cot x dx =$	$\int \frac{\cos x}{\sin x} dx = \ln \sin x $	+6	
	g	$\int \frac{e^x}{e^x + 7} dx$	$= \ln e^x + 7 + C = \ln$	$(e^x+7)+C$	
		$\int \csc x dx =$	$\int \csc x \times \frac{\csc x + \cot x}{\csc x + \cot x}$	$\frac{x}{x}dx$	
	h	=	$\int \frac{\csc^2 x + \csc x \cot x}{\csc x + \cot x}$	$\frac{x}{dx}$	
		, e	$= -1 \int \frac{-\csc^2 x - \csc}{\csc x + \cos}$	$\frac{x \cot x}{\cot x} dx = -1$	$\ln \csc x + \cot x + C$
	0795604	ا.ایاد العمد 563	& 0799948198		طريق التفوق في الرياضيا

أتحقق من فهمي صفحة 17

$$\int \frac{x^2 + x + 1}{x + 1} dx = \int \left(x + \frac{1}{x + 1}\right) dx = \frac{1}{2}x^2 + \ln|x + 1| + C$$

أتحقق من فهمي صفحة 19

$$\int_{-1}^{3} f(x) \ dx = \int_{-1}^{1} (1+x) \ dx + \int_{1}^{3} 2x \ dx$$

$$= \left(x + \frac{1}{2}x^2\right)\Big|_{-1}^{1} + x^2\Big|_{1}^{3}$$

$$= \left(1 + \frac{1}{2}\right) - \left(-1 + \frac{1}{2}\right) + 9 - 1 = 10$$

$$f(x) = \begin{cases} 1 - x, & x \le 1 \\ x - 1, & x > 1 \end{cases}$$

$$\int_{-2}^{2} f(x) \ dx = \int_{-2}^{1} (1-x) \ dx + \int_{1}^{2} (x-1) \ dx$$

$$= \left(x - \frac{1}{2}x^2\right)\Big|_{-2}^{1} + \left(\frac{1}{2}x^2 - x\right)\Big|_{1}^{2}$$

$$= \left(1 - \frac{1}{2}\right) - \left(-2 - 2\right) + \left(2 - 2\right) - \left(\frac{1}{2} - 1\right) = 5$$

$$f(x) = \begin{cases} x^2 - 1, x < -1 \\ 1 - x^2, -1 \le x \le 1 \\ x^2 - 1, x > 1 \end{cases}$$

$$\int_{-4}^{0} f(x) \ dx = \int_{-4}^{-1} (x^2 - 1) \ dx + \int_{-1}^{0} (1 - x^2) \ dx$$

$$= \left(\frac{1}{3}x^3 - x\right)\Big|_{-4}^{-1} + \left(x - \frac{1}{3}x^3\right)\Big|_{-1}^{0}$$

$$= \left(-\frac{1}{3}+1\right) - \left(-\frac{64}{3}+4\right) + (0-0) - \left(-1+\frac{1}{3}\right)$$

$$=\frac{56}{3}$$

11
$$\int \frac{e^x + 1}{e^x} dx = \int (1 + e^{-x}) dx = x - e^{-x} + C$$

12
$$\int \frac{e^x}{e^x + 4} dx = \ln|e^x + 4| + C = \ln(e^x + 4) + C$$

13
$$\int \frac{\sin x \cos x + 4}{2} \sin 2x + 4$$

$$= \ln \left| \frac{1}{2} \sin 2x + 4 \right| + C = \ln \left(\frac{1}{2} \sin 2x + 4 \right) + C$$

$$\int \frac{dx}{5 - \frac{x}{3}} = -3 \int \frac{-\frac{1}{3}}{5 - \frac{x}{3}} dx$$

$$= -3 \ln \left| 5 - \frac{x}{3} \right| + C$$

$$\int \frac{1}{1 - \sin x} dx = \int \frac{1}{1 - \sin x} \times \frac{1 + \sin x}{1 + \sin x} dx$$

$$= \int \frac{1 + \sin x}{1 - \sin^2 x} dx$$

$$= \int \frac{1 + \sin x}{\cos^2 x} dx$$

$$= \int (\sec^2 x + \tan x \sec x) dx$$

 $= \tan x + \sec x + C$

$$\int \sec^2 x (1 + e^x \cos^2 x) dx = \int (\sec^2 x + e^x) dx$$

$$= \tan x + e^x + C$$

17
$$\int \left(\frac{2}{x} - 2^x\right) dx = 2 \ln|x| - \frac{2^x}{\ln 2} + C$$

18
$$\int \sin 3x \cos 2x \, dx = \frac{1}{2} \int (\sin 5x + \sin x) dx$$
$$= -\frac{1}{10} \cos 5x - \frac{1}{2} \cos x + C$$

$$\int \frac{2x+3}{3x^2+9x-1} dx = \frac{1}{3} \int \frac{6x+9}{3x^2+9x-1} dx$$
$$= \frac{1}{3} \ln|3x^2+9x-1| + C$$

أزالوظتم

طريق التفوق في الرياضيات :

ا.ایاد الحمد 0795604563

$$|x^{2} - 4x + 3| = \begin{cases} x^{2} - 4x + 3 & , x < 1 \\ -x^{2} + 4x - 3, 1 \le x \le 3 \\ x^{2} - 4x + 3 & , x > 3 \end{cases}$$

$$\int_0^4 |x^2 - 4x + 3| \ dx$$

34 =
$$\int_0^1 (x^2 - 4x + 3) dx + \int_1^3 (-x^2 + 4x - 3) dx + \int_3^4 (x^2 - 4x + 3) dx$$

$$= \left(\frac{1}{3}x^3 - 2x^2 + 3x\right)\Big|_0^1 + \left(-\frac{1}{3}x^3 + 2x^2 - 3x\right)\Big|_1^3 + \left(\frac{1}{3}x^3 - 2x^2 + 3x\right)\Big|_3^4$$

$$= \frac{1}{3} - 2 + 3 - 0 + (-9 + 18 - 9) - \left(-\frac{1}{3} + 2 - 3\right) + \frac{64}{3} - 32 + 12$$

$$-(9-18+9)=4$$

$$|x-3| = \begin{cases} 3-x, & x \le 3 \\ x-3, & x > 3 \end{cases}$$

$$\int_{1}^{4} (3 - |x - 3|) \, dx = \int_{1}^{3} (3 - (3 - x)) \, dx + \int_{3}^{4} (3 - (x - 3)) \, dx$$

$$= \int_{1}^{3} x \, dx + \int_{3}^{4} (6 - x) \, dx$$

$$= \frac{1}{2}x^2 \Big|_{1}^{3} + \left(6x - \frac{1}{2}x^2\right)\Big|_{3}^{4}$$

$$=\frac{9}{2}-\frac{1}{2}+24-8-(18-\frac{9}{2})=\frac{13}{2}$$

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{0} (x^2 + 4) dx + \int_{0}^{1} (4 - x) dx$$

$$= \left(\frac{1}{3}x^3 + 4x\right)\Big|_{-1}^{0} + \left(4x - \frac{1}{2}x^2\right)\Big|_{0}^{1}$$

$$=0-\left(-\frac{1}{3}-4\right)+4-\frac{1}{2}-0$$

د.خالد جلال 0799948198

0795604563 هـ.اياد الحمد

د. خالد جلال 0795604563 & الياد العمد 0795604563

طريق التفوق في الرياضيات :

$$y = \int \sin\left(\frac{\pi}{2} - 2x\right) dx = \frac{-\cos\left(\frac{\pi}{2} - 2x\right)}{-2} + C = \frac{1}{2}\cos\left(\frac{\pi}{2} - 2x\right) + C$$

$$y|_{x=\frac{\pi}{4}} = \frac{1}{2}\cos(\frac{\pi}{2} - \frac{\pi}{2}) + C$$

$$1 = \frac{1}{2} + C \implies C = \frac{1}{2}$$

$$\Rightarrow y = \frac{1}{2}\cos\left(\frac{\pi}{2} - 2x\right) + \frac{1}{2}$$

$$\Rightarrow y = \frac{1}{2}\sin 2x + \frac{1}{2}$$

$$\Rightarrow y = \frac{1 + \sin 2x}{2}$$

$$y = \int (e^{2x} - 2e^{-x}) dx = \frac{1}{2}e^{2x} + 2e^{-x} + C$$

$$y|_{x=0} = \frac{1}{2} + 2 + C$$

43

$$1 = \frac{5}{2} + C \Longrightarrow C = -\frac{3}{2}$$

$$\Rightarrow y = \frac{1}{2}e^{2x} + 2e^{-x} - \frac{3}{2}$$

$$\int_{\frac{\pi}{9}}^{\pi} (9 + \sin 3x) \, dx = \left(9x - \frac{1}{3}\cos 3x\right)\Big|_{\frac{\pi}{9}}^{\pi}$$

 $=8\pi+\frac{1}{2}$

$$= 9\pi - \frac{1}{3}\cos 3\pi - \pi + \frac{1}{3}\cos \frac{\pi}{3}$$
$$= 8\pi + \frac{1}{3} + \frac{1}{6}$$

44

$$\Rightarrow 8\pi + \frac{1}{2} = a\pi + b$$

$$a=8$$
 , $b=rac{1}{2}$ ونظرًا لأن $a=0$ نسبيّان، قلا يوجد حل لهذه المعائلة سوى أن يكون:

$$f(x) = \int \cos^2 x \ dx = \frac{1}{2} \int (1 + \cos 2x) \ dx = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x\right) + C$$

$$45 \qquad f(0) = \frac{1}{2} \left(0 + \frac{1}{2} \sin 0\right) + C$$

$$0 = 0 + C \Rightarrow C = 0$$

$$f(x) = \int e^{-2t} \ dt = -\frac{1}{2} e^{-2t} + C$$

$$s(0) = -\frac{1}{2} + C \Rightarrow C = \frac{7}{2}$$

$$3 = -\frac{1}{2} + C \Rightarrow C = \frac{7}{2} \Rightarrow s(t) = -\frac{1}{2} e^{-2t} + \frac{7}{2}$$

$$47 \qquad s(100) = -\frac{1}{2} e^{-200} + \frac{7}{2} \approx 3.5 \ m$$

$$P(t) = \int -0.51 e^{-0.03t} \ dt = \frac{-0.51}{-0.03} e^{-0.03t} + C = 17 e^{-0.03t} + C$$

$$48 \qquad P(0) = 17 + C$$

$$P(t) = 17e^{-0.03t} + 483$$

$$P(t) = 17e^{-0.03t} + 483$$

 $500 = 17 + C \implies C = 483$

49
$$P(10) = 17e^{-0.3} + 483 \approx 496$$

$$P(t) = \int (0.15 - 0.9e^{0.006t}) dt$$
$$= 0.15t - \frac{0.9}{0.006}e^{0.006t} + C$$

$$= 0.15t - 150e^{0.006t} + C$$

$$P(0) = -150 + C$$

50

$$30 = -150 + C \Longrightarrow C = 180$$

$$P(t) = 0.15t - 150e^{0.006t} + 180$$

51
$$P(10) = 1.5 - 150e^{0.06} + 180 \approx 22.2 \text{ cm}^3$$

طريق التفوق في الرياضيات

طريق التفوق في الرياضيات : د.خالد جلال 0799948198 & ا.اياد العمد 0795604563 طريق التفوق في الرياضيات :

الدرس الأول

تكاملات إقترانات خاصة (كتاب التمارين)

1	$\int 4e^{-5x} dx = -\frac{4}{5}e^{-5x} + C$
2	$\int (\sin 2x - \cos 2x) dx = -\frac{1}{2} \cos 2x - \frac{1}{2} \sin 2x + C$
3	$\int \cos^2 2x dx = \frac{1}{2} \int (1 + \cos 4x) dx = \frac{1}{2} x + \frac{1}{8} \sin 4x + C$
4	$\int \frac{e^x + 4}{e^{2x}} dx = \int (e^{-x} + 4e^{-2x}) dx = -e^{-x} - 2e^{-2x} + C$
5	$\int (\cot x \csc x - 2e^x) dx = -\csc x - 2e^x + C$
6	$\int (3\cos 3x - \tan^2 x) dx = \int \left(3\cos 3x - (\sec^2 x - 1)\right) dx$ $= \sin 3x - \tan x + x + C$
7	$\int \cos 3x \left(1 + \csc^2 x\right) dx = \int \cos x \left(1 + \frac{1}{\sin^2 x}\right) dx$ $= \int \cos x + \cot x \csc x dx = \sin x - \csc x + C$
8	$\int \frac{x^2 + x - 4}{x + 2} dx = \int \left(x - 1 - \frac{2}{x + 2}\right) dx = \frac{1}{2}x^2 - x - 2\ln x + 2 + C$
9	$\int \frac{1}{\sqrt{e^x}} dx = \int e^{-\frac{1}{2}x} dx = -2e^{-\frac{1}{2}x} + C$
10	$\int \left(\frac{1}{\cos^2 x} + \frac{1}{x^2}\right) dx = \int (\sec^2 x + x^{-2}) dx = \tan x - \frac{1}{x} + C$
-11	$\int \frac{x^2 - 2x}{x^3 - 3x^2} dx = \frac{1}{3} \int \frac{3x^2 - 6x}{x^3 - 3x^2} dx = \frac{1}{3} \ln x^3 - 3x^2 + C$
12	$\int \ln e^{\cos x} dx = \int \cos x dx = \sin x + C$

د.خالد جلال 0799948198 & 0799948198

طريق التفوق في الرياضيات:

13
$$\int \sin^2 \frac{x}{2} dx = \frac{1}{2} \int (1 - \cos x) dx = \frac{1}{2} (x - \sin x) + C$$

14
$$\int \frac{3}{2x-1} dx = \frac{3}{2} \int \frac{2}{2x-1} dx = \frac{3}{2} \ln|2x-1| + C$$

$$\int \frac{3 - 2\cos\frac{1}{2}x}{\sin^2\frac{1}{2}x} dx = \int \left(3\csc^2\frac{1}{2}x - 2\cot\frac{1}{2}x\csc\frac{1}{2}x\right) dx$$

$$= -6\cot\frac{1}{2}x + 4\csc\frac{1}{2}x + C$$

16
$$\int_0^1 \frac{e^x}{e^x + 4} dx = \ln|e^x + 4||_0^1 = \ln(e + 4) - \ln 5 = \ln \frac{e + 4}{5}$$

17
$$\int_{1}^{2} \frac{1}{3x-2} dx = \frac{1}{3} \int_{1}^{2} \frac{3}{3x-2} dx = \frac{1}{3} \ln|3x-2| \Big|_{1}^{2} = \frac{1}{3} \ln 4 - 0 = \frac{1}{3} \ln 4$$

$$\int_0^{\frac{\pi}{3}} \sin x \cos x \, dx = \frac{1}{2} \int_0^{\frac{\pi}{3}} \sin 2x \, dx = -\frac{1}{4} \cos 2x \Big|_0^{\frac{\pi}{3}} = \frac{1}{8} + \frac{1}{4} = \frac{3}{8}$$

$$\int_{-1}^{1} |3x - 2| dx = \int_{-1}^{\frac{2}{3}} (2 - 3x) dx + \int_{\frac{2}{3}}^{1} (3x - 2) dx$$

19

$$= \left(2x - \frac{3}{2}x^2\right)\Big|_{-1}^{\frac{2}{3}} + \left(\frac{3}{2}x^2 - 2x\right)\Big|_{\frac{2}{3}}^{\frac{1}{3}} = \frac{13}{3}$$

$$\int_0^{\frac{\pi}{4}} (\cos x + 3\sin x)^2 dx = \int_0^{\frac{\pi}{4}} (\cos^2 x + 6\sin x \cos x + 9\sin^2 x) dx$$

$$= \int_0^{\frac{\pi}{4}} (1 - \sin^2 x + 6 \sin x \cos x + 9 \sin^2 x) dx$$

20

$$=\int_0^{\frac{\pi}{4}} (1+8\sin^2 x+3\sin 2x)dx = \int_0^{\frac{\pi}{4}} (1+4(1-\cos 2x)+3\sin 2x)dx$$

$$= \int_0^{\frac{\pi}{4}} (5 - 4\cos 2x + 3\sin 2x) dx = \left(5x - 2\sin 2x - \frac{3}{2}\cos 2x\right)\Big|_0^{\frac{\pi}{4}} = \frac{5\pi - 2}{4}$$

21
$$\int_0^{\frac{\pi}{4}} \tan x \, dx = -\int_0^{\frac{\pi}{4}} \frac{-\sin x}{\cos x} \, dx = -\ln|\cos x| \Big|_0^{\frac{\pi}{4}} = -\ln\frac{1}{\sqrt{2}} - 0 = \frac{1}{2}\ln 2$$

$$\int_{0}^{16} (\cos^{2} 2x - 4\sin^{2} x \cos^{2} x) dx = \int_{0}^{16} (\cos^{2} 2x - (2\sin x \cos x)^{2}) dx$$

$$= \int_{0}^{\pi} (\cos^{2} 2x - \sin^{2} 2x) dx = \int_{0}^{\pi} (\cos^{2} 2x - (2\sin x \cos x)^{2}) dx$$

$$\int_0^{\frac{\pi}{4}} \frac{(1+\sin x)^2}{\cos^2 x} dx = \int_0^{\frac{\pi}{4}} \frac{1+2\sin x + \sin^2 x}{\cos^2 x} dx$$

$$= \int_0^{\frac{\pi}{4}} \left(\frac{1}{\cos^2 x} + \frac{2 \sin x}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x} \right) dx$$

$$= \int_0^{\frac{\pi}{4}} (\sec^2 x + 2 \tan x \sec x + \tan^2 x) dx$$

$$= \int_0^{\frac{\pi}{4}} (\sec^2 x + 2 \tan x \sec x + \sec^2 x - 1) dx$$

$$= \int_0^{\frac{\pi}{4}} (2\sec^2 x + 2\tan x \sec x - 1) dx$$

$$= (2 \tan x + 2 \sec x - x)|_0^{\frac{\pi}{4}} = 2 + 2\sqrt{2} - \frac{\pi}{4} - 2 = 2\sqrt{2} - \frac{\pi}{4}$$

$$\int_{0}^{1} \frac{6x}{3x+2} dx = \int_{0}^{1} \left(2 - \frac{4}{3x+2}\right) dx = \left(2x - \frac{4}{3}\ln|3x+2|\right) \Big|_{0}^{1}$$
$$= 2 - \frac{4}{3}\ln 5 + \frac{4}{3}\ln 2 = 2 + \frac{4}{3}\ln\frac{2}{5}$$

$$\int_{1}^{5} f(x)dx = \int_{1}^{3} (2x+1)dx + \int_{3}^{5} (10-x)dx$$

$$= (x^{2}+x)\Big|_{1}^{3} + \left(10x - \frac{1}{2}x^{2}\right)\Big|_{3}^{5}$$

$$= 12 - 2 + 50 - \frac{25}{2} - 30 + \frac{9}{2} = 22$$

$$\int_1^k \frac{4}{2x-1} dx = 1$$

$$\Rightarrow 2 \ln |2x-1||_1^k = 1$$

$$\Rightarrow 2 \ln|2k-1|=1$$

$$\Rightarrow 2 \ln|2k-1| = 1$$

$$\Rightarrow 2 \ln(2k-1) = 1 \Rightarrow \ln(2k-1) = \frac{1}{2} , k > \frac{1}{2}$$

$$\Rightarrow 2k-1=e^{\frac{1}{2}} \qquad \Rightarrow k=\frac{e^{\frac{1}{2}}+1}{2}$$

$$\int_0^{\ln a} (e^x + e^{-x}) dx = \frac{48}{7}$$

$$\Rightarrow (e^{x} - e^{-x})|_{0}^{\ln a} = \frac{48}{7} \Rightarrow \left(a - \frac{1}{a}\right) - (1 - 1) = \frac{48}{7}$$

27
$$\Rightarrow a - \frac{1}{a} - \frac{48}{7} = 0$$
 $\Rightarrow 7a^2 - 48a - 7 = 0$ $\Rightarrow (7a + 1)(a - 7) = 0$

$$\Rightarrow a = -\frac{1}{7}(\dot{a}$$
 , $a = 7$

28
$$A = \int_0^{\pi} 2\cos^2\frac{1}{2}x \, dx = \int_0^{\pi} (1 + \cos x) dx = (x + \sin x)|_0^{\pi} = \pi$$

$$f(x) = \int (e^{-x} + x^2) dx = -e^{-x} + \frac{1}{3}x^3 + C$$

$$f(x) = -e^{-x} + \frac{1}{3}x^3 + C$$

$$f(0) = -1 + C$$

$$(0) = -1 + C$$

$$4 = -1 + C \Rightarrow C = 5 \Rightarrow f(x) = -e^{-x} + \cdots + i$$

$$f(x) = \int \left(\frac{3}{x} - 4\right) dx = 3 \ln|x| - 4x + C$$

$$f(x) = 3\ln|x| - 4x + C$$

$$f(1) = -4 + C$$

$$0 = -4 + C \Longrightarrow C = 4$$

$$\Rightarrow f(x) = 3\ln|x| - 4x + 4$$

31
$$s(3) - s(0) = \int_0^3 v(t) dt = \int_0^3 \frac{-t}{1+t^2} dt = -\frac{1}{2} \ln(1+t^2) \Big|_0^3 = -\frac{1}{2} \ln 10 \text{ m}$$

32
$$d = \int_0^3 |v(t)| dt = \int_0^3 \frac{t}{1+t^2} dt = \frac{1}{2} \ln(1+t^2) \Big|_0^3 = \frac{1}{2} \ln 10 \text{ m}$$

33
$$s\left(\frac{\pi}{2}\right) - s(0) = \int_0^{\frac{\pi}{2}} v(t) dt = \int_0^{\frac{\pi}{2}} 6\sin 3t dt = -2\cos 3t \Big|_0^{\frac{\pi}{2}} = 2 \text{ m}$$

$$6\sin 3t = 0 \Rightarrow 3t = 0, \pi \Rightarrow t = 0, \frac{\pi}{3}$$

34
$$d = \int_0^{\frac{\pi}{2}} |v(t)| dt = \int_0^{\frac{\pi}{2}} |6\sin 3t| dt = \int_0^{\frac{\pi}{3}} |6\sin 3t| dt + \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} |-6\sin 3t| dt$$

$$= -2\cos 3t|_0^{\frac{\pi}{3}} + 2\cos 3t|_{\frac{\pi}{3}}^{\frac{\pi}{2}} = 2 + 2 + 0 - 2(-1) = 6 \text{ m}$$

 $0 \le t \le 6$ عندما

$$s(t) = \int (8t - t^2)dt = 4t^2 - \frac{1}{3}t^3 + C_1$$

$$s(0) = 0 - 0 + C_1$$

$$0=0+C_1\Rightarrow C_1=0$$

$$\Rightarrow s(t) = 4t^2 - \frac{1}{3}t^3 \quad , 0 \le t \le 6$$

t > 6 عندما

35
$$s(t) = \int \left(15 - \frac{1}{2}t\right)dt = 15t - \frac{1}{4}t^2 + C_2$$

الموقع الابتدائي للجسيم في هذه الفترة هو موقعه في نهاية الفترة الأولى أي (6) ع

$$s(6)=144-rac{216}{3}=72$$
 نحسب $s(6)$ من قاعدة الموقع السابقة

$$s(6) = 90 - 9 + C_2$$

$$72 = 81 + C_2 \Longrightarrow C_2 = -9$$

$$\Rightarrow s(t) = 15t - \frac{1}{4}t^2 - 9$$
 , $t > 6$ $\Rightarrow s(40) = 191 \text{ m}$

الدرس الثاني التكامل بالتعويض (كتاب الطالب)

$$G(t) = \int \frac{60000e^{-0.6t}}{(1+5e^{-0.6t})^2} dt$$
 $u = 1+5e^{-0.6t}$
 $\frac{du}{dt} = -3e^{-0.6t} \Rightarrow dt = \frac{du}{-3e^{-0.6t}}$
 $G(t) = \int \frac{60000e^{-0.6t}}{u^2} \times \frac{du}{-3e^{-0.6t}}$
 $= \int -20000u^{-2} du$
 $= 20000u^{-1} + C \Rightarrow G(t) = \frac{20000}{1+5e^{-0.6t}} + C \Rightarrow$
 $25000 = \frac{10000}{3} + C \Rightarrow C = \frac{65000}{3}$
 $\Rightarrow G(t) = \frac{20000}{1+5e^{-0.6t}} + \frac{65000}{3} \Rightarrow G(20) \approx 41666 \text{ kg}$
 $u = x^3 - 5 \Rightarrow \frac{du}{dx} = 3x^2 \Rightarrow dx = \frac{du}{3x^2}$
 $\int 4x^2 \sqrt{x^3 - 5} dx = \int 4x^2 \sqrt{u} \times \frac{du}{3x^2} = \int \frac{4}{3} u^{\frac{1}{2}} du$
 $= \frac{8}{9} u^{\frac{3}{2}} + C = \frac{8}{9} \sqrt{(x^3 - 5)^3} + C$

$$\int \frac{1}{2\sqrt{x}} e^{\sqrt{x}} dx = \int \frac{1}{2\sqrt{x}} e^{u} \times 2\sqrt{x} du$$

$$=\int e^{u}du$$

$$=e^u+C$$

$$=e^{\sqrt{x}}+C$$

$$u = \ln x \implies \frac{du}{dx} = \frac{1}{x} \implies dx = xdu$$

$$\int \frac{(\ln x)^3}{x} dx = \int \frac{u^3}{x} \times x du$$

$$= \int u^3 du$$

$$= \frac{1}{4}u^4 + C$$

$$= \frac{1}{4}u^4 + C$$

$$= \frac{1}{4}(\ln x)^4 + C$$

$$u = \ln x \implies \frac{du}{dx} = \frac{1}{x} \implies dx = xdu$$

$$\int \frac{\cos(\ln x)}{x} dx = \int \frac{\cos u}{x} \times x du$$

$$= \int \cos u \, du = \sin u + C = \sin(\ln x) + C$$

$$u = \cos 5x \implies \frac{du}{dx} = -5\sin 5x \implies dx = \frac{du}{-5\sin 5x}$$

$$\int \cos^4 5x \sin 5x \, dx = \int u^4 \sin 5x \times \frac{du}{-5 \sin 5x}$$

National
$$C = \int -\frac{1}{5}u^4du = -\frac{1}{25}u^5 + C$$

$$=-\frac{1}{25}\cos^5 5x + C$$

$$u = x^2$$
 $\Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$ afformational Gamer

$$\int x2^{x^2}dx = \int x2^u \times \frac{du}{2x}$$

$$=\int \frac{1}{2} 2^u du$$

$$=\frac{1}{2}\frac{2^{u}}{\ln 2}+C$$

$$= \frac{1}{\ln 2} 2^{x^2 - 1} + C$$

$$u=1+2x \implies \frac{du}{dx}=2 \implies dx=\frac{du}{2}$$
 , $x=\frac{u-1}{2}$

$$\int \frac{x}{\sqrt{1+2x}} dx = \int \frac{\frac{1}{2}(u-1)}{u^{\frac{1}{2}}} \times \frac{du}{2}$$

$$= \frac{1}{4} \int \left(u^{\frac{1}{2}} - u^{-\frac{1}{2}} \right) du$$
$$= \frac{1}{4} \left(\frac{2}{3} u^{\frac{3}{2}} - 2u^{\frac{1}{2}} \right) + C$$

$$= \frac{1}{6}(1+2x)^{\frac{3}{2}} - \frac{1}{2}(1+2x)^{\frac{1}{2}} + C$$

$$=\frac{1}{6}\sqrt{(1+2x)^3}-\frac{1}{2}\sqrt{1+2x}+C$$

$$u = x^4 - 8 \Rightarrow \frac{du}{dx} = 4x^3 \Rightarrow dx = \frac{du}{4x^3}$$
, $x^4 = u + 8$

$$\int x^7 (x^4 - 8)^3 dx = \int x^7 u^3 \times \frac{du}{4x^3} = \frac{1}{4} \int x^4 u^3 du$$

$$=\frac{1}{4}\int (u+8)u^3du = \frac{1}{4}\int (u^4+8u^3)du$$

$$=\frac{1}{4}\left(\frac{1}{5}u^5+2u^4\right)+C=\frac{1}{20}(x^4-8)^5+\frac{1}{2}(x^4-8)^4+C$$

$$u = 1 - e^x \Rightarrow \frac{du}{dx} = -e^x \Rightarrow dx = \frac{du}{-e^x} , e^x = 1 - u$$

$$\int \frac{e^{3x}}{(1 - e^x)^2} dx = \int \frac{e^{3x}}{u^2} \times \frac{du}{-e^x}$$

$$= \int -\frac{e^{2x}}{u^2} du$$

$$= \int \frac{-(1-u)^2}{u^2} du$$

$$= \int \frac{-1+2u-u^2}{u^2} du$$

$$= \int \left(-u^{-2} + \frac{2}{u} - 1\right) du$$

$$= (u^{-1} + 2\ln|u| - u) + C$$

$$= \frac{1}{1 - e^x} + 2\ln|1 - e^x| - 1 + e^x + C$$

أتحقق من فهمي صفحة 35

$$u = \sqrt[3]{x} \implies \frac{du}{dx} = \frac{1}{3}x^{-\frac{2}{3}} \implies dx = 3x^{\frac{2}{3}}du , \quad x = u^3$$

$$\int \frac{dx}{x + \sqrt[3]{x}} = \int \frac{3x^{\frac{2}{3}}du}{u^3 + u}$$

$$= \int \frac{3u^2}{u^3 + u} du$$

$$= \int \frac{3u}{u^2 + 1} du$$

$$= \frac{3}{2} \int \frac{2u}{u^2 + 1} du$$
$$= \frac{3}{2} \ln(u^2 + 1) + C$$
$$= \frac{3}{2} \ln\left(x^{\frac{2}{3}} + 1\right) + C$$

$$u = 1 - x \implies \frac{du}{dx} = -1 \implies dx = -du , \quad x = 1 - u$$
$$\int x \sqrt[3]{(1 - x)^2} dx = \int x \sqrt[3]{u^2} \times -du$$

$$= \int -(1-u)^{3} \sqrt{u^{2}} du$$

$$= \int -(1-u)u^{\frac{2}{3}} du$$

$$= \int \left(-u^{\frac{2}{3}} + u^{\frac{5}{3}}\right) du$$

$$= -\frac{3}{5}u^{\frac{5}{3}} + \frac{3}{8}u^{\frac{8}{3}} + C$$

$$= -\frac{3}{5}(1-x)^{\frac{5}{3}} + \frac{3}{8}(1-x)^{\frac{8}{3}} + C$$

$$= -\frac{3}{5}\sqrt[3]{(1-x)^5} + \frac{3}{8}\sqrt[3]{(1-x)^8} + C$$

أتحقق من فهمي صفحة 37

$$p(x) = \int \frac{-135x}{\sqrt{9+x^2}} dx$$

$$u = 9 + x^{2} \implies \frac{du}{dx} = 2x \implies dx = \frac{du}{2x}$$

$$p(x) = \int \frac{-135x}{\sqrt{u}} \times \frac{du}{2x}$$

$$= \frac{-135}{2} \int u^{-\frac{1}{2}} du$$

$$=-135u^{\frac{1}{2}}+C$$

$$p(x) = -135\sqrt{9 + x^2} + C$$

$$p(4) = -135\sqrt{9+16} + C = -135(5) + C$$

$$30 = -675 + C \Longrightarrow C = 705$$

$$p(x) = 705 - 135\sqrt{9 + x^2}$$

أتحقق من فهمي صفحة 39 $\int \sin^3 x \, dx = \int \sin x \sin^2 x \, dx = \int \sin x \, (1 - \cos^2 x) \, dx$ $u = \cos x \implies \frac{du}{dx} = -\sin x \implies dx = \frac{du}{-\sin x}$ $\int \sin^3 x \, dx = \int \sin x (1 - u^2) \frac{du}{-\sin x}$ $= \int (u^2 - 1) du$ $=\frac{1}{2}u^3-u+C$ $= \frac{1}{2}\cos^3 x - \cos x + C$ $u = \sin x \implies \frac{du}{dx} = \cos x \implies dx = \frac{du}{\cos x}$ $\int \cos^5 x \sin^2 x \, dx = \int \cos^5 x \, u^2 \, \frac{du}{\cos x}$ $= \int \cos^4 x \, u^2 \, du$

 $= \int (1 - \sin^2 x)^2 u^2 du$ $= \int (1 - u^2)^2 u^2 du$ $= \int (u^2 - 2u^4 + u^6) du$ $= \frac{1}{3}u^3 - \frac{2}{5}u^5 + \frac{1}{7}u^7 + C$

 $= \frac{1}{3}\sin^3 x - \frac{2}{5}\sin^5 x + \frac{1}{7}\sin^7 x + C$

 $=\frac{1}{2}\cot^2 x - \frac{1}{4}\cot^4 x + \ln|\sin x| + C$

اتحقق من فهمي صفحة 43

 $=\frac{1}{7}\tan^7 x + \frac{1}{9}\tan^9 x + C$

$$u = x + 1 \implies \frac{du}{dx} = 1 \implies dx = du, \ x = u - 1$$

$$x=0 \implies u=1$$

$$x=2 \implies u=3$$

$$\int_0^2 x(x+1)^3 dx = \int_1^3 (u-1)u^3 du$$

$$= \int_{1}^{3} (u^4 - u^3) du$$

$$=\left(\frac{1}{5}u^5-\frac{1}{4}u^4\right)\Big|_1^3$$

$$= \frac{1}{5}(3)^5 - \frac{1}{4}(3)^4 - \left(\frac{1}{5}(1)^5 - \frac{1}{4}(1)^4\right)$$

$$=\frac{142}{5}=28.4$$

0795604563
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1$

$$\int x^{2}\sqrt{x+3} \, dx = \int x^{2}\sqrt{u} \, du$$

$$= \int (u-3)^{2}\sqrt{u} \, du$$

$$= \int \left(u^{\frac{5}{2}} - 6u^{\frac{3}{2}} + 9u^{\frac{1}{2}}\right) \, du$$

$$= \frac{2}{7}u^{\frac{7}{2}} - \frac{12}{5}u^{\frac{5}{2}} + 6u^{\frac{3}{2}} + C$$

$$= \frac{2}{7}(x+3)^{\frac{7}{2}} - \frac{12}{5}(x+3)^{\frac{5}{2}} + 6(x+3)^{\frac{3}{2}} + C$$

$$= \frac{2}{7}\sqrt{(x+3)^7} - \frac{12}{5}\sqrt{(x+3)^5} + 6\sqrt{(x+3)^3} + C$$

$$\int x(x+2)^3 dx = \int xu^3 du$$

$$=\int (u-2)u^3\ du$$

$$=\int (u^4-2u^3)\ du$$

$$=\frac{1}{5}u^5-\frac{1}{2}u^4+C$$

$$=\frac{1}{5}(x+2)^5-\frac{1}{2}(x+2)^4+C$$

$$u = x + 4 \implies dx = du$$
, $x = u - 4$

$$\int \frac{x}{\sqrt{x+4}} dx = \int \frac{x}{\sqrt{u}} du$$

$$=\int \frac{u-4}{\sqrt{u}}du$$

$$= \int \left(u^{\frac{1}{2}} - 4u^{-\frac{1}{2}}\right) du$$

$$=\frac{2}{3}u^{\frac{3}{2}}-8u^{\frac{1}{2}}+C$$

$$=\frac{2}{3}(x+4)^{\frac{3}{2}}-8(x+4)^{\frac{1}{2}}+C$$

$$= \frac{2}{3}\sqrt{(x+4)^3} - 8\sqrt{x+4} + C$$

$$\int \sin x \cos 2x \, dx = \int \sin x (2 \cos^2 x - 1) dx$$

$$u = \cos x \implies \frac{du}{dx} = -\sin x \implies dx = \frac{du}{-\sin x}$$

$$\int \sin x \cos 2x \, dx = \int \sin x (2u^2 - 1) \times \frac{du}{-\sin x}$$

$$=\int (1-2u^2)du$$

$$= u - \frac{2}{3}u^3 + C$$

$$u = e^x + 1 \implies \frac{du}{dx} = e^x \implies dx = \frac{du}{e^x}$$
, $e^x = u - 1$

$$\int \frac{e^{3x}}{e^x + 1} dx = \int \frac{e^{3x}}{u} \times \frac{du}{e^x}$$

$$=\int \frac{e^{2x}}{u}du$$

$$\int_{0}^{\infty} \frac{u}{u} du$$

$$=\int \left(u-2+\frac{1}{u}\right)du$$

$$= \frac{1}{2}u^2 - 2u + \ln|u| + C$$

$$= \frac{1}{2}(e^x+1)^2 - 2(e^x+1) + \ln(e^x+1) + C$$

$$\int \sec^4 x \, dx = \int \sec^2 x \times \sec^2 x \, dx = \int \sec^2 x \, (1 + \tan^2 x) dx$$

$$u = \tan x \implies \frac{du}{dx} = \sec^2 x \implies dx = \frac{du}{\sec^2 x}$$

$$\int \sec^4 x \ dx = \int \sec^2 x \ (1 + u^2) \times \frac{du}{\sec^2 x}$$

$$= \int (1+u^2) \, du = u + \frac{1}{3}u^3 + C = \tan x + \frac{1}{3}\tan^3 x + C$$

$$\int \frac{\tan x}{\cos^2 x} dx = \int \tan x \sec^2 x \, dx$$

$$u = \tan x \implies \frac{du}{dx} = \sec^2 x \implies dx = \frac{du}{\sec^2 x}$$

$$\int \frac{\tan x}{\cos^2 x} dx = \int u \sec^2 x \times \frac{du}{\sec^2 x}$$

$$= \int u \, du$$

$$=\frac{1}{2}u^2+C$$
 $=\frac{1}{2}\tan^2x+C$

$$\int \frac{\sin(\ln x)}{x} dx = \int \frac{\sin u}{x} \times x \, du$$

$$= \int \sin u \, du$$

$$=-\cos u+C$$

$$= -\cos(\ln x) + C$$

$$\int \frac{\sin x \cos x}{1 + \sin^2 x} dx = \frac{1}{2} \int \frac{2 \sin x \cos x}{1 + \sin^2 x} dx$$

$$= \frac{1}{2} \ln(1 + \sin^2 x) + C$$

$$u = e^x + e^{-x} \Rightarrow \frac{du}{dx} = e^x - e^{-x} \Rightarrow dx = \frac{du}{e^x - e^{-x}}$$

$$\int \frac{2e^{x}-2e^{-x}}{(e^{x}+e^{-x})^{2}}dx = \int \frac{2(e^{x}-e^{-x})}{u^{2}} \times \frac{du}{e^{x}-e^{-x}}$$

$$=\int 2u^{-2}du$$

$$= -2u^{-1} + C = -\frac{2}{e^x + e^{-x}} + C$$

$$u = x + 1 \implies dx = du, x = u - 1$$

$$\int \frac{-x}{(x+1)\sqrt{x+1}} dx = \int \frac{1-u}{u\sqrt{u}} du$$

$$=\int \frac{1-u}{u^2} du$$

$$=\int \left(u^{-\frac{3}{2}}-u^{-\frac{1}{2}}\right)du$$

$$=-2u^{-\frac{1}{2}}-2u^{\frac{1}{2}}+C$$

$$=-2(x+1)^{-\frac{1}{2}}-2(x+1)^{\frac{1}{2}}+C$$

$$=\frac{-2}{\sqrt{x+1}}-2\sqrt{x+1}+C$$

$$\int \frac{\sec^3 x + e^{\sin x}}{\sec x} dx = \int \sec^2 x \, dx + \int \cos x \, e^u \times \frac{du}{\cos x}$$

$$= \tan x + \int e^u du$$

$$= \tan x + e^u + C = \tan x + e^{\sin x} + C$$

$$= u - \frac{1}{3}u^3 + \frac{3}{4}u^{\frac{4}{3}} - \frac{3}{10}u^{\frac{10}{3}} + C$$

$$= \sin x - \frac{1}{3}\sin^3 x + \frac{3}{4}\sin^{\frac{4}{3}}x - \frac{3}{10}\sin^{\frac{10}{3}}x + C$$

 $\int \sin x \, \sec^5 x \, dx = \int \sin x \, \cos^{-5} x \, dx$

$$u = \cos x \implies \frac{du}{dx} = -\sin x \implies dx = \frac{du}{-\sin x}$$

$$\int \sin x \sec^5 x \, dx = \int \sin x \, u^{-5} \times \frac{du}{-\sin x}$$
$$= -\int u^{-5} \, du = \frac{1}{4}u^{-4} + C$$

$$= \frac{1}{4}\cos^{-4}x + C = \frac{1}{4}\sec^{4}x + C$$

$$\int \frac{\sin x + \tan x}{\cos^3 x} dx = \int (\tan x \sec^2 x + \tan x \sec^3 x) dx$$

$$= \int \tan x \sec x (\sec x + \sec^2 x) dx$$

$$u = \sec x \Rightarrow \frac{du}{dx} = \tan x \sec x \Rightarrow dx = \frac{du}{\tan x \sec x}$$

$$18 \int \frac{\sin x + \tan x}{\cos^3 x} dx = \int \tan x \sec x (u + u^2) \frac{du}{\tan x \sec x}$$

$$= \int (u + u^2) du = \frac{1}{2} u^2 + \frac{1}{3} u^3 + C$$

$$= \frac{1}{2} \sec^2 x + \frac{1}{2} \sec^3 x + C$$

$$\sqrt{1-\cos^2 2x}=\sqrt{\sin^2 2x}=|\sin 2x|$$
لكن الزاوية $2x$ تكون طمن الربع الأول عندما $x<rac{\pi}{4}$ لكن الزاوية كا

 $|\sin 2x| = \sin 2x$ ويكون $\sin 2x > 0$ لذا فإن

$$\int_0^{\frac{\pi}{4}} \sin x \sqrt{1 - \cos^2 2x} \, dx = \int_0^{\frac{\pi}{4}} \sin x \sin 2x \, dx$$

$$= \int_0^{\frac{\pi}{4}} 2 \sin^2 x \cos x \, dx$$

$$u = \sin x \implies \frac{du}{dx} = \cos x \implies dx = \frac{du}{\cos x}$$

19
$$x = 0 \Rightarrow u = 0$$
 $x = \frac{\pi}{4} \Rightarrow u = \frac{1}{\sqrt{2}}$

$$\int_0^{\frac{\pi}{4}} \sin x \sqrt{1 - \cos^2 2x} \, dx = \int_0^{\frac{1}{\sqrt{2}}} 2u^2 \cos x \, \frac{du}{\cos x}$$

$$= \int_0^{\frac{1}{\sqrt{2}}} 2u^2 du = \frac{2}{3}u^3 \Big|_0^{\frac{1}{\sqrt{2}}} = \frac{1}{3\sqrt{2}}$$

$$u = x^2 \implies \frac{du}{dx} = 2x \implies dx = \frac{du}{2x}$$

$$x=\frac{\pi}{2} \implies u=\frac{\pi^2}{4}$$

$$x=0 \implies u=0$$

$$x = 0 \implies u = 0$$

$$\int_0^{\frac{\pi}{2}} x \sin x^2 dx = \int_0^{\frac{\pi^2}{4}} x \sin u \frac{du}{2x}$$

$$=\frac{1}{2}\int_0^{\frac{\pi^2}{4}}\sin u\ du$$

$$= -\frac{1}{2} \cos u \Big|_{0}^{\frac{\pi^{2}}{4}}$$

$$= -\frac{1}{2} \left(\cos \frac{\pi^{2}}{4} - 1 \right) \approx 0.891$$

$$u = 1 + x^2 \implies \frac{du}{dx} = 2x \implies dx = \frac{du}{2x}$$
, $x^2 = u - 1$

$$x=0 \implies u=1$$

$$x=1 \implies u=2$$

$$\int_0^1 \frac{x^3}{\sqrt{1+x^2}} dx = \int_1^2 \frac{x^3}{\sqrt{u}} \times \frac{du}{2x} = \frac{1}{2} \int_1^2 \frac{x^2}{\sqrt{u}} du = \frac{1}{2} \int_1^2 \frac{u-1}{\sqrt{u}} du$$

$$=\frac{1}{2}\int_{1}^{2}\left(u^{\frac{1}{2}}-u^{-\frac{1}{2}}\right)du$$

$$= \frac{1}{2} \left(\frac{2}{3} u^{\frac{3}{2}} - 2 u^{\frac{1}{2}} \right) \Big|_{1}^{2}$$

$$=\frac{1}{2}\left(\frac{2}{3}(2)^{\frac{3}{2}}-2(2)^{\frac{1}{2}}-(\frac{2}{3}(1)-2(1))\right)$$

$$=\frac{2-\sqrt{2}}{2}$$

$$x = 0 \implies u = 0$$

$$x = \frac{\pi}{3} \implies u = \sqrt{3}$$

$$\int_{0}^{\frac{\pi}{3}} \sec^{2}x \tan^{5}x \, dx = \int_{0}^{\sqrt{3}} \sec^{2}x \, u^{5} \, \frac{du}{\sec^{2}x}$$

$$=\int_0^{\sqrt{3}} u^5 du$$

$$=\frac{1}{6}u^6\Big|_0^{\sqrt{3}}$$
$$=\frac{9}{4}$$

$$u = (x-1)^2 \Rightarrow \frac{du}{dx} = 2(x-1) \Rightarrow dx = \frac{du}{2(x-1)}$$

$$x=0 \implies u=1$$

$$x=2 \implies u=1$$

$$\int_0^2 (x-1)e^{(x-1)^2} dx = \int_1^1 (x-1)e^u \frac{du}{2(x-1)} = 0$$

$$u = 2 + \sqrt{x} \implies \frac{du}{dx} = \frac{1}{2\sqrt{x}} \implies dx = 2\sqrt{x} du$$

$$x = 1 \implies u = 3$$

$$x = 4 \implies u = 4$$

$$\int_{1}^{4} \frac{\sqrt{2+\sqrt{x}}}{\sqrt{x}} dx = \int_{3}^{4} \frac{\sqrt{u}}{\sqrt{x}} 2\sqrt{x} du = \int_{3}^{4} 2\sqrt{u} du = \frac{4}{3}u^{\frac{3}{2}}\Big|_{3}^{4} = \frac{4(8-3\sqrt{3})}{3}$$

$$u = 1 + x^{\frac{3}{2}} \implies \frac{du}{dx} = \frac{3}{2}x^{\frac{1}{2}} \implies dx = \frac{2}{3}\frac{du}{x^{\frac{1}{2}}}$$

$$x=0 \implies u=1$$

$$x=1 \Rightarrow u=2$$

$$\int_0^1 \frac{10\sqrt{x}}{\left(1+\sqrt{x^3}\right)^2} dx = \int_1^2 \frac{10\sqrt{x}}{u^2} \frac{2}{3} \frac{du}{x^{\frac{1}{2}}}$$

$$=\frac{20}{3}\int_{1}^{2}u^{-2}\ du=-\frac{20}{3}u^{-1}\Big|_{1}^{2}=\frac{10}{3}$$

$$u = \cos x \implies \frac{du}{dx} = -\sin x \implies dx = \frac{du}{-\sin x}$$

$$x=0 \implies u=1$$

$$x = 0 \implies u = 1$$

$$x = \frac{\pi}{6} \implies u = \frac{\sqrt{3}}{2}$$

$$\int_0^{\frac{\pi}{6}} 2^{\cos x} \sin x \, dx = \int_1^{\frac{\sqrt{3}}{2}} 2^u \sin x \, \frac{du}{-\sin x}$$

$$=-\int_1^{\frac{\sqrt{3}}{2}}2^u\ du$$

$$=-\frac{2^{u}}{\ln 2}\Big|_{1}^{\frac{\sqrt{3}}{2}}$$

$$= -\frac{1}{\ln 2} \left(2^{\frac{\sqrt{3}}{2}} - 2 \right) \approx 0.256$$

$$x=\frac{\pi}{2}\implies u=0$$

$$x = \frac{\pi}{4} \implies u = 1$$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \csc^2 x \cot^5 x \ dx = \int_{1}^{0} \csc^2 x \ u^5 \ \frac{du}{-\csc^2 x}$$

$$=\int_{1}^{0}-u^{5} du$$

$$= -\frac{1}{6}u^6\Big|_1^0$$

$$= \frac{1}{6}u^6\Big|_1^0$$

$$A = -\int_{-1}^{0} 6x(x^{2} + 1)^{3} dx + \int_{0}^{1} 6x(x^{2} + 1)^{3} dx$$

$$u = x^2 + 1 \implies \frac{du}{dx} = 2x \implies dx = \frac{du}{2x}$$

$$x=-1 \implies u=2$$

$$x=0 \implies u=1$$

$$x = 1 \implies u = 2$$

$$A = -\int_{2}^{1} 6xu^{3} \frac{du}{2x} + \int_{1}^{2} 6xu^{3} \frac{du}{2x}$$

$$= \int_{1}^{2} 3u^{3} du + \int_{1}^{2} 3u^{3} du = \int_{1}^{2} 6u^{3} du$$

$$= \frac{6}{4} u^{4} \Big|_{1}^{2}$$

$$=\frac{45}{2}$$

$$A = \int_2^4 \frac{x}{(x-1)^3} dx$$

$$u = x - 1 \implies dx = du$$
, $x = u + 1$
 $x = 2 \implies u = 1$
 $x = 4 \implies u = 3$

$$x=2 \Rightarrow u=1$$

$$x = 4 \implies u = 3$$

29 A =
$$\int_{2}^{4} \frac{x}{(x-1)^{3}} dx = \int_{1}^{3} \frac{u+1}{u^{3}} du$$
 alienal Center

$$= \int_{1}^{3} (u^{-2} + u^{-3}) du = \left(-u^{-1} - \frac{1}{2} u^{-2} \right) \Big|_{1}^{3}$$

$$= -\frac{1}{3} - \frac{1}{2} \left(\frac{1}{9} \right) + 1 + \frac{1}{2}$$

$$=\frac{10}{9}$$

$$u = x^2 \implies \frac{du}{dx} = 2x \implies dx = \frac{du}{2x}$$

$$x=-1 \implies u=1$$

$$x=0 \implies u=0$$

$$x=2 \implies u=4$$

$$A = -\int_{-1}^{0} x e^{x^{2}} dx + \int_{0}^{2} x e^{x^{2}} dx = -\int_{1}^{0} x e^{u} \frac{du}{2x} + \int_{0}^{4} x e^{u} \frac{du}{2x}$$

$$= -\int_{1}^{0} \frac{1}{2} e^{u} du + \int_{0}^{4} \frac{1}{2} e^{u} du$$

$$=-\frac{1}{2}e^{u}\Big|_{1}^{0}+\frac{1}{2}e^{u}\Big|_{0}^{4}$$

$$= -\frac{1}{2}e^{0} + \frac{1}{2}e^{1} + \frac{1}{2}e^{4} - \frac{1}{2}e^{0}$$

$$=\frac{1}{2}(e^4+e)-1\approx 27.658$$

$$u = x^{2} + \frac{\pi}{6} \implies \frac{du}{dx} = 2x \implies dx = \frac{du}{2x}$$
$$x = \sqrt{\frac{\pi}{6}} \implies u = \frac{\pi}{3}$$

$$x=0 \implies u=\frac{\pi}{6}$$

$$A = \int_0^{\sqrt{\frac{\pi}{6}}} 2x \cos\left(x^2 + \frac{\pi}{6}\right) dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 2x \cos u \frac{du}{2x}$$

$$=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\cos u\,du$$

$$=\sin u|_{\frac{n}{2}}^{\frac{n}{3}}$$

$$= \sin\frac{\pi}{3} - \sin\frac{\pi}{6}$$

$$=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}\approx 0.366$$

$$f(x) = \int f'(x) dx = \int 2x(4x^2 - 10)^2 dx$$

$$u = 4x^2 - 10 \implies \frac{du}{dx} = 8x \implies dx = \frac{du}{8x}$$

$$f(x) = \int 2xu^2 \frac{du}{8x} = \int u^2 \frac{du}{4}$$

$$=\frac{1}{4}\int u^2 du$$

$$= \frac{1}{12}u^3 + C$$

$$\Rightarrow f(x) = \frac{1}{12}(4x^2 - 10)^3 + C$$

$$f(2) = \frac{1}{12}(216) + C = 10 \implies C = -8$$

$$10 = 18 + C \implies C = -8$$

$$\Rightarrow f(x) = \frac{1}{12}(4x^2 - 10)^3 - 8$$

$$f(x) = \int f'(x) dx = \int x^2 e^{-0.2x^3} dx$$

$$u = -0.2x^3 \implies \frac{du}{dx} = -0.6x^2 \implies dx = \frac{du}{-0.6x^2}$$

$$f(x) = \int x^2 e^u \frac{du}{-0.6x^2} = -\frac{10}{6} \int e^u du$$

National Cent =
$$-\frac{5}{3}e^{u} + C$$
 ional Center

$$\Rightarrow f(x) = -\frac{5}{3}e^{-0.2x^3} + C$$

$$f(0)=-\frac{5}{3}+C$$

$$\frac{3}{2} = -\frac{5}{3} + C \implies C = \frac{19}{6}$$
5 and 19

$$\Rightarrow f(x) = -\frac{5}{3}e^{-0.2x^3} + \frac{19}{6}$$

f(x)=0 نجد أصفار الأقران بحل المعادلة

$$x(x-2)^4 = 0 \implies x = 0, x = 2$$

$$f'(x) = (x-2)^4 + 4x(x-2)^3$$
 : $f'(2)$ ويمكن التحقق بحساب

$$f'(2) = (2-2)^4 + 4(2)(2-2)^3 = 0$$

$$A=\int_0^2 x(x-2)^4 dx$$

$$u=x-2 \implies dx=du$$
, $x=u+2$

$$x=0 \implies u=-2$$

$$x=2 \implies u=0$$

$$A = \int_0^2 x(x-2)^4 dx = \int_{-2}^0 (u+2)u^4 du = \left(\frac{1}{6}u^6 + \frac{2}{5}u^5\right)\Big|_{-2}^0 = \frac{32}{15}$$

$$u = \cos \omega t \Rightarrow \frac{du}{dx} = -\omega \sin \omega t \Rightarrow dt = \frac{du}{-\omega \sin \omega t}$$

$$s(t) = \int \sin \omega t \ u^2 \frac{du}{-\omega \sin \omega t}$$

$$=\frac{-1}{\omega}\int u^2 du = \frac{-1}{3\omega}u^3 + C$$

$$\Rightarrow s(t) = -\frac{1}{3\omega}\cos^3\omega t + C$$
 National Canter

$$s(0) = -\frac{1}{3\omega} + C \implies 0 = -\frac{1}{3\omega} + C \implies C = \frac{1}{3\omega}$$

$$\Rightarrow s(t) = -\frac{1}{3\omega}\cos^3\omega t + \frac{1}{3\omega}$$

$$C(t) = \int C'(t)dt = \int \frac{-0.01e^{-0.01t}}{(1 + e^{-0.01t})^2}dt$$

$$u = 1 + e^{-0.01t} \Rightarrow \frac{du}{dt} = -0.01e^{-0.01t} \Rightarrow dt = \frac{du}{-0.01e^{-0.01t}}$$

$$C(t) = \int \frac{-0.01e^{-0.01t}}{u^2} \times \frac{du}{-0.01e^{-0.01t}} = \int u^{-2} du$$

$$= -u^{-1} + K$$

$$C(t) = -(1 + e^{-0.01t})^{-1} + K$$

$$C(0) = -(2)^{-1} + K$$

$$\frac{1}{2} = -\frac{1}{2} \Rightarrow K = 1$$

$$\Rightarrow C(t) = -(1 + e^{-0.01t})^{-1} + 1$$

$$C(t) = \frac{-1}{1 + e^{-0.01t}} + 1$$

$$u = e^x - 2 \Rightarrow \frac{du}{dx} = e^x \Rightarrow dx = \frac{du}{e^x}$$

$$e^x=u+2$$

$$x = \ln 3 \Rightarrow u = e^{\ln 3} - 2 = 3 - 2 = 1$$

$$x = \ln 4 \implies u = e^{\ln 4} - 2 = 4 - 2 = 2$$

$$\int_{\ln 3}^{\ln 4} \frac{e^{4x}}{e^x - 2} \, dx = \int_1^2 \frac{e^{4x}}{u} \, \frac{du}{e^x} = \int_1^2 \frac{e^{3x}}{u} \, du$$

$$=\int_1^2 \frac{(u+2)^3}{u} du$$

$$= \int_{1}^{2} \frac{u^3 + 6u^2 + 12u + 8}{u} du$$

$$= \int_{1}^{2} \left(u^{2} + 6u + 12 + \frac{8}{u} \right) du$$

$$= \left(\frac{1}{3}u^3 + 3u^2 + 12u + 8\ln|u|\right)\Big|_{1}^{2}$$

$$= \left(\frac{1}{3}(2)^3 + 3(2)^2 + 12(2) + 8\ln 2\right) - \left(\frac{1}{3}(1)^3 + 3(1)^2 + 12(1) + 8\ln 1\right)$$

$$=\frac{70}{3}+8\ln 2$$

 $f(3) = -\ln|\cos 3| + C$

$$f(x) = \int \tan x \ dx = -\int \frac{-\sin x}{\cos x} \ dx = -\ln|\cos x| + C$$

$$5 = -\ln|\cos 3| + C \implies C = 5 + \ln|\cos 3|$$

$$f(x) = -\ln|\cos x| + 5 + \ln|\cos 3| = \ln\left|\frac{\cos 3}{\cos x}\right| + 5$$

$$f(x) = 0 \implies 3\cos x \sqrt{1 + \sin x} = 0$$

$$\cos x = 0 \implies x = \frac{\pi}{2} + 2n\pi, n \in \mathbb{Z}, x = \frac{3\pi}{2} + 2n\pi, n \in \mathbb{Z}$$

$$\sin x = -1 \implies x = \frac{3\pi}{2} + 2n\pi, n \in \mathbb{Z}$$

يوجد عدد لا نهائي من الحلول لهاتين المعادلتين، ونريد أصغر حلين موجبين (الإحداثي x النقطتين

National Center
$$n=0$$
 بوضع $x=rac{\pi}{2}, x=rac{3\pi}{2}$ اصغر حلین موجبین هما:

$$\Rightarrow B\left(\frac{\pi}{2},0\right), \quad C\left(\frac{3\pi}{2},0\right)$$

$$n = -1$$
 اکبر حل سالب مو: $x = -\frac{\pi}{2}$ ، بوضع

$$\Rightarrow A\left(-\frac{\pi}{2},0\right)$$

$$D(0,f(0)) = (0,3)$$
 أما النقطة D فإحداثياها هما:

$$A = A_1 + A_2 = A(R_1) + A(R_2)$$

$$A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (3\cos x \sqrt{1 + \sin x}) \ dx + \left(-\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} (3\cos x \sqrt{1 + \sin x}) \ dx\right)$$

$$u = 1 + \sin x \Rightarrow \frac{du}{dx} = \cos x \Rightarrow dx = \frac{du}{\cos x}$$

$$x=-\frac{\pi}{2} \Longrightarrow u=0$$

$$x=\frac{\pi}{2} \implies u=2$$

$$x=\frac{3\pi}{2} \implies u=0$$

$$A = 3 \int_0^2 \cos x \sqrt{u} \, \frac{du}{\cos x} + (-3 \int_2^0 \cos x \sqrt{u} \, \frac{du}{\cos x})$$
$$= 3 \int_0^2 \sqrt{u} \, du + 3 \int_0^2 \sqrt{u} \, du$$

$$=6\int_{0}^{2}\sqrt{u}\ du=4u^{\frac{3}{2}}\Big|_{0}^{2}=4(2\sqrt{2}-0)=8\sqrt{2}$$

 $A(R_1) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (3\cos x \sqrt{1 + \sin x}) dx = \int_{0}^{2} 3\sqrt{u} du = 4\sqrt{2}$

$$A(R_2) = -\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} (3\cos x \sqrt{1 + \sin x}) dx = -\int_{2}^{0} 3\sqrt{u} \ du = 4\sqrt{2}$$

$$\Rightarrow A(R_1) = A(R_2)$$

$$u = 1 + x^{\frac{3}{4}} \implies \frac{du}{dx} = \frac{3}{4}x^{-\frac{1}{4}} \implies dx = \frac{4}{3}x^{\frac{1}{4}}du, \quad x^{\frac{3}{4}} = u - 1$$

$$x=1 \implies u=2$$

$$x=16 \implies u=9$$

$$\int_{1}^{16} \frac{\sqrt{x}}{1 + \sqrt[4]{x^3}} dx = \int_{2}^{9} \frac{x^{\frac{1}{2}}}{u} \frac{4}{3} x^{\frac{1}{4}} du$$

$$=\frac{4}{3}\int_{2}^{9}\frac{x^{\frac{3}{4}}}{u}\,du=\frac{4}{3}\int_{2}^{9}\frac{u-1}{u}\,du=\frac{4}{3}\int_{2}^{9}\left(1-\frac{1}{u}\right)\,du$$

$$= \frac{4}{3}(u - \ln|u|) \Big|_{2}^{9} = \frac{4}{3} \left(7 - \ln\frac{9}{2}\right)$$

$$\int_0^{\frac{\pi}{2}} f(\cos x) \ dx = \int_0^{\frac{\pi}{2}} f\left(\sin\left(\frac{\pi}{2} - x\right)\right) \ dx$$

$$u = \frac{\pi}{2} - x \implies dx = -du$$

$$x = 0 \implies u = \frac{\pi}{2}$$

$$x=\frac{\pi}{2} \implies u=0$$

$$\int_0^{\frac{\pi}{2}} f(\cos x) \, dx = \int_{\frac{\pi}{2}}^0 -f(\sin u) \, du = \int_0^{\frac{\pi}{2}} f(\sin u) \, du = \int_0^{\frac{\pi}{2}} f(\sin x) \, dx$$

$$48$$

$$= \int (2u^4 - 2u^3) du$$

$$= \frac{2}{5}u^5 - \frac{1}{2}u^4 + C$$

$$= \frac{2}{5}(1 + \sin x)^5 - \frac{1}{2}(1 + \sin x)^4 + C$$

الدرس الثاني

التكامل بالتعويض (كتاب التمارين)

$$1 \qquad u = x^{2} + 4 \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$$

$$\int \frac{x}{\sqrt{x^{2} + 4}} dx = \int \frac{x}{\sqrt{u}} \frac{du}{2x} = \int \frac{1}{2} u^{-\frac{1}{2}} du = u^{\frac{1}{2}} + C = \sqrt{x^{2} + 4} + C$$

$$u = 1 - \cos \frac{x}{2} \Rightarrow \frac{du}{dx} = \frac{1}{2} \sin \frac{x}{2} \Rightarrow dx = \frac{2}{\sin \frac{x}{2}} du$$

$$2 \qquad \int \left(1 - \cos \frac{x}{2}\right)^{2} \sin \frac{x}{2} dx = \int u^{2} \sin \frac{x}{2} \frac{2}{\sin \frac{x}{2}} du = \int 2u^{2} du = \frac{2}{3} u^{3} + C$$

$$= \frac{2}{3} \left(1 - \cos \frac{x}{2}\right)^{3} + C$$

$$\int \csc^{5} x \cos^{3} x dx = \int \frac{\cos^{3}}{\sin^{5} x} x dx = \int \cot^{3} x \csc^{2} x dx$$

$$u = \cot x \Rightarrow \frac{du}{dx} = -\csc^{2} x \Rightarrow dx = \frac{du}{-\csc^{2} x}$$

$$3 \qquad \int \csc^{5} x \cos^{3} x dx = \int \cot^{3} x \csc^{2} x dx$$

$$= \int u^{3} \csc^{2} \frac{du}{-\csc^{2} x} = \int -u^{3} du = -\frac{1}{4} u^{4} + C$$

$$= -\frac{1}{4} \cot^{4} x + C$$

$$u = x^{2} \Rightarrow dx = \frac{du}{2x}$$

$$4 \qquad \int x \sin x^{2} dx = \int \frac{1}{2} \sin u du = -\frac{1}{2} \cos u + C = -\frac{1}{2} \cos x^{2} + C$$

$$u = x + 2 \Rightarrow dx = du , \quad x = u - 2$$

$$\int x^{3}(x + 2)^{7} dx = \int (u - 2)^{3} u^{7} du = \int (u^{10} - 6u^{9} + 12u^{8} - 8u^{7}) du$$

$$= \frac{1}{11} u^{11} - \frac{3}{5} u^{10} + \frac{4}{3} u^{9} - u^{8} + C$$

$$= \frac{1}{11} (x + 2)^{11} - \frac{3}{5} (x + 2)^{10} + \frac{4}{3} (x + 2)^{9} - (x + 2)^{8} + C$$

$$\int \frac{\ln \sqrt{x}}{x} dx = \int \frac{\frac{1}{2} \ln x}{x} dx$$

$$6 \quad u = \ln x \Rightarrow \frac{du}{dx} = \frac{1}{x} \Rightarrow dx = x du$$

$$\int \frac{\ln \sqrt{x}}{x} dx = \int \frac{\frac{1}{2} \ln x}{x} dx = \int \frac{1}{2} u du = \frac{1}{4} u^{2} + C = \frac{1}{4} (\ln x)^{2} + C$$

$$u = \sqrt{x} \Rightarrow \frac{du}{dx} = \frac{1}{2\sqrt{x}} \Rightarrow dx = 2\sqrt{x} du$$

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = \int \frac{e^{u}}{\sqrt{x}} \times 2\sqrt{x} du = 2 \int e^{u} du = 2e^{u} + C = 2e^{\sqrt{x}} + C$$

$$\int \frac{\sin(\ln 4x^{2})}{x} dx = \int \frac{\sin(2 \ln 2x)}{x} dx$$

$$u = 2 \ln 2x \Rightarrow \frac{du}{dx} = \frac{2}{x} \Rightarrow dx = \frac{x}{2} du$$

$$\int \frac{\sin(\ln 4x^{2})}{x} dx = \int \frac{\sin u}{x} \times \frac{x}{2} du = \frac{1}{2} \int \sin u du = -\frac{1}{2} \cos u + C$$

$$= -\frac{1}{2} \cos(2 \ln 2x) + C = -\frac{1}{2} \cos(\ln 4x^{2}) + C$$

$$\int \sec^2 x \cos^3(\tan x) dx = \int \cos^3 u \, du = \int \cos u \cos^2 u \, du$$

$$= \int \cos u \, (1 - \sin^2 u) \, du$$

$$v = \sin u \Rightarrow \frac{dv}{dx} = \cos u \Rightarrow \cos u \, dx = dv$$

$$\int \cos u \, (1 - \sin^2 u) \, du = \int (1 - v^2) \, dv = v - \frac{1}{3} v^3 + C$$

$$= \sin u - \frac{1}{3}\sin^3 u + C$$

$$= \sin(\tan x) - \frac{1}{3}\sin^3(\tan x) + C$$

ملحوظة: يمكن إيجاد هذا التكامل بإعادة كتابته على الصورة:

$$\int \sec^2 x \, \cos(\tan x) \left(1 - \sin^2(\tan x)\right) dx$$

 $u = \sin(\tan x)$ ويتعويض واحد فقط هو

$$x = 20 \Rightarrow u = 81$$

$$x = 6 \Rightarrow u = 25$$

$$\int_{6}^{20} \frac{8x}{\sqrt{4x+1}} dx = \int_{25}^{81} \frac{u-1}{2\sqrt{u}} du = \int_{25}^{81} \left(\frac{1}{2}u^{\frac{1}{2}} - \frac{1}{2}u^{-\frac{1}{2}}\right) du$$

$$= \left(\frac{1}{3}u^{\frac{3}{2}} - u^{\frac{1}{2}}\right)\Big|_{25}^{81} = (243 - 9) - \left(\frac{125}{3} - 5\right) = \frac{592}{3}$$

$$u = \sqrt{x-1} \Rightarrow u^2 = x-1 \Rightarrow 2udu = dx$$

$$x = 5 \Rightarrow u = 2$$
 $(x = 2 \Rightarrow u = 1)$

$$x = 5 \Rightarrow u = 2 \qquad x = 2 \Rightarrow u = 1$$

$$\int_{2}^{5} \frac{1}{1 + \sqrt{x - 1}} dx = \int_{1}^{2} \frac{2u}{1 + u} du = \int_{1}^{2} \left(2 - \frac{2}{u + 1}\right) du$$

$$= (2u - 2\ln|u + 1|)|_1^2 = (4 - 2\ln 3) - (2 - 2\ln 2) = 2 - 2\ln\frac{2}{3}$$

$$u = 1 + \cos x \Rightarrow \frac{du}{dx} = -\sin x \Rightarrow dx = \frac{du}{-\sin x}$$

$$x=\frac{\pi}{2} \Rightarrow u=1$$

$$x = 0 \Rightarrow u = 2$$

$$= (2u - 2\ln|u|)|_1^2 = (4 - 2\ln 2) - (2 - 0) = 2 - 2\ln 2$$

$$u = 1 + \sqrt{x} \Rightarrow \frac{du}{dx} = \frac{1}{2\sqrt{x}} \Rightarrow dx = 2\sqrt{x}du$$

$$x=4 \Rightarrow u=3$$

$$x=1 \Longrightarrow u=2$$

$$\int_{1}^{4} \frac{\left(1 + \sqrt{x}\right)^{3}}{\sqrt{x}} dx = \int_{2}^{3} \frac{u^{3}}{\sqrt{x}} \times 2\sqrt{x} du = \int_{2}^{3} 2u^{3} du = \frac{1}{2} u^{4} \Big|_{2}^{3} = \frac{81}{2} - \frac{16}{2} = \frac{65}{2}$$

$$u = \tan x \Rightarrow \frac{du}{dx} = \sec^2 x \Rightarrow dx = \frac{du}{\sec^2 x} = \cos^2 x du$$

$$x = \frac{\pi}{4} \Longrightarrow u = 1$$

$$x=0 \Rightarrow u=0$$

$$\int_0^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos^2 x} dx = \int_0^1 \frac{e^u}{\cos^2 x} \times \cos^2 x du = \int_0^1 \frac{e^u}{e^u} du = e^u \Big|_0^1 = e - 1$$

$$\begin{array}{c|c}
u = \cos x \\
x =
\end{array}$$

$$u = \cos x \Rightarrow \frac{du}{dx} = -\sin x \Rightarrow dx = \frac{du}{dx}$$

$$x = 0 \Rightarrow u = 1$$

$$\frac{du}{dx} = \frac{1}{2}$$

$$\frac{du}{dx} = \frac{1}{2}$$

$$\int_0^{\frac{\pi}{3}} \cos^2 x \sin^3 x \, dx = \int_1^{\frac{1}{2}} u^2 \sin^3 x \times \frac{du}{-\sin x} = \int_{\frac{\pi}{2}}^1 u^2 (1 - u^2) \, du$$

$$= \int_{\frac{1}{2}}^{1} (u^2 - u^4) \ du = \left(\frac{1}{3}u^3 - \frac{1}{5}u^5\right)\Big|_{\frac{1}{2}}^{1} = \left(\frac{1}{3} - \frac{1}{5}\right) - \left(\frac{1}{24} - \frac{1}{160}\right) = \frac{47}{480}$$

$$x\sqrt{1+x}=0 \Rightarrow x=0$$
, $x=-1$

$$A = -\int_{-1}^{0} f(x) \, dx = \int_{-1}^{0} -x\sqrt{1+x} \, dx$$

$$u=1+x \Rightarrow dx=du$$
 , $x=u-1$

$$x = 0 \Longrightarrow u = 1$$

16
$$x=-1 \Rightarrow u=0$$

$$A = \int_{-1}^{0} -x\sqrt{1+x} \, dx = \int_{0}^{1} -x\sqrt{u} \, du = \int_{0}^{1} (1-u)\sqrt{u} \, du$$

$$= \int_0^1 \left(u^{\frac{1}{2}} - u^{\frac{3}{2}} \right) du = \left(\frac{2}{3} u^{\frac{3}{2}} - \frac{2}{5} u^{\frac{5}{2}} \right) \Big|_0^1 = \frac{2}{3} - \frac{2}{5} = \frac{4}{15}$$

$$f(x) = \int 16 \sin x \, \cos^3 x \, dx$$

$$u = \cos x \Rightarrow \frac{du}{dx} = -\sin x \Rightarrow dx = \frac{du}{-\sin x}$$

$$f(x) = \int 16 \sin x \ u^3 \times \frac{du}{-\sin x} = \int -16 \ u^3 \ du = -4u^4 + C$$

$$f\left(\frac{\pi}{4}\right) = -4\left(\frac{1}{\sqrt{2}}\right)^4 + C$$

$$0 = -1 + C \Longrightarrow C = 1$$

$$\Rightarrow f(x) = -4\cos^4 x + 1$$

$$f(x) = \int \frac{x}{\sqrt{x^2 + 5}} dx$$

$$u = x^2 + 5 \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$$

18
$$f(x) = \int \frac{x}{\sqrt{u}} \times \frac{du}{2x} = \int \frac{1}{2} u^{-\frac{1}{2}} du = u^{\frac{1}{2}} + C = \sqrt{x^2 + 5} + C$$

$$f(2) = 3 + C \implies 1 = 3 + C \implies C = -2 \implies f(x) = \sqrt{x^2 + 5} - 2$$

$$s(t) = \int \frac{-2t}{(1+t^2)^{\frac{3}{2}}} dx$$

$$u = 1 + t^2 \Rightarrow \frac{du}{dt} = 2t \Rightarrow dt = \frac{du}{2t}$$

$$u = 1 + t^{2} \Rightarrow \frac{du}{dt} = 2t \Rightarrow dt = \frac{du}{2t}$$

$$s(t) = \int \frac{-2t}{u^{\frac{3}{2}}} \times \frac{du}{2t} = \int -u^{-\frac{3}{2}} du = 2u^{-\frac{1}{2}} + C = \frac{2}{\sqrt{1+t^{2}}} + C$$

$$s(0) = 2 + C =$$

$$4=2+C \Rightarrow C=2$$

$$\Rightarrow s(t) = \frac{2}{\sqrt{1+t^2}} + 2$$

الدرس الثالث

التكامل بالكسور الجزئية (كتاب الطالب)

4)	مسلة اليوم صفحة 47
	$A = \int_1^2 \frac{1}{x^3 + x} dx$
إزالتنا	لإيجاد قيمة هذا التكامل نجزئ المقدار $\frac{1}{x^3+x}$ إلى كسور جزئية يمكن إيجاد تكاملاتها بسهولة كما ياتى:
ional Ce	$\frac{1}{x^3 + x} = \frac{\text{Nat 1 nal Ce } A}{x(x^2 + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}$ $\Rightarrow 1 = A(x^2 + 1) + (Bx + C)(x)$ $x = 0 \Rightarrow A = 1$ National Center National Center
أزالوط	$x = 1 \Rightarrow 1 = 2A + B + C \Rightarrow 1 = 2 + B + C$ $x = -1 \Rightarrow 1 = 2A + B - C \Rightarrow 1 = 2 + B - C$
ional Ce	$B=-1$ بحل هاتين المعادلتين نجد أنّ: $C=0$ ، و $C=0$ بحل هاتين المعادلتين نجد أنّ: $A=\int_1^2 rac{1}{x^3+x} \ dx=\int_1^2 \left(rac{1}{x}+rac{-x}{x^2+1} ight) \ dx$
	$= \ln x - \frac{1}{2}\ln x^2 + 1 \Big _1^2$
ional Co	$= \ln 2 - \frac{1}{2} \ln 5 - \ln 1 + \frac{1}{2} \ln 2$ $= \frac{3}{2} \ln 2 - \frac{1}{2} \ln 5 = \frac{1}{2} \ln \frac{8}{5}$

	10 - 0	9 0 0	19
x-7	x-7	A	B
$x^2 - x - 6$	(x-3)(x+2)	$\overline{x-3}$	$\overline{x+2}$

$$\Rightarrow x - 7 = A(x+2) + B(x-3)$$

$$x = 3 \Rightarrow A = -\frac{4}{5}$$

$$x = -2 \implies B = \frac{9}{5}$$

$$\int \frac{x-7}{x^2-x-6} dx = \int \left(\frac{-\frac{4}{5}}{x-3} + \frac{\frac{9}{5}}{x+2} \right) dx$$

$$= -\frac{4}{5}\ln|x-3| + \frac{9}{5}\ln|x+2| + C$$

$$\frac{3x-1}{x^2-1} = \frac{3x-1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}$$

$$\Rightarrow 3x - 1 = A(x+1) + B(x-1)$$

$$x = 1 \Longrightarrow A = 1$$

$$x = -1 \Rightarrow B = 2$$

$$x = -1 \Rightarrow B = 2$$

$$\int \frac{3x - 1}{x^2 - 1} dx = \int \left(\frac{1}{x - 1} + \frac{2}{x + 1}\right) dx$$

$$= \ln|x - 1| + 2\ln|x + 1| + C$$

y malinimes i syl	التحقة من فهم صفحة 53	literaturojimiterio
ional Cen	$\int \frac{4x^3 - 5}{2x^2 - x - 1} dx = \int \left(2x + 1 + \frac{3x - 4}{2x^2 - x - 1}\right) dx$ $\frac{3x - 4}{2x^2 - x - 1} = \frac{3x - 4}{(2x + 1)(x - 1)} = \frac{A}{2x + 1} + \frac{B}{x - 1}$ $\Rightarrow 3x - 4 = A(x - 1) + B(2x + 1)$ $x = -\frac{1}{2} \Rightarrow A = \frac{11}{3}$	National Co
ional Cen	$x = 1 \Rightarrow B = -\frac{1}{3}$ $\int \frac{4x^3 - 5}{2x^2 - x - 1} dx = \int \left(2x + 1 + \frac{\frac{11}{3}}{2x + 1} + \frac{-\frac{1}{3}}{x - 1}\right) dx$ $= x^2 + x + \frac{11}{6} \ln 2x + 1 - \frac{1}{3} \ln x - 1 $	National Ce
b	$\int \frac{x^2 + x - 1}{x^2 - x} dx = \int \left(1 + \frac{2x - 1}{x^2 - x}\right) dx$ $= x + \ln x^2 - x + C$	
	انحقق من فهمي صفحه 54 $\int_3^4 \frac{2x^3 + x^2 - 2x - 4}{x^2 - 4} dx = \int_3^4 \left(2x + 1 + \frac{6x}{x^2 - 4}\right) dx$	
3	$= (x^2 + x + 3 \ln x^2 - 4) _3^4$ $= (20 + 3 \ln 12) - (12 + 3 \ln 5)$	
	$= 8 + 3 \ln \frac{12}{5}$	

طريق التفوق في الرياضيات:

$$\frac{3x - 10}{x^2 - 7x + 12} = \frac{3x - 10}{(x - 3)(x - 4)} = \frac{A}{x - 3} + \frac{B}{x - 4}$$

$$\Rightarrow 3x - 10 = A(x - 4) + B(x - 3)$$

$$x = 3 \Rightarrow A = 1$$

$$x = 4 \Rightarrow B = 2$$

$$c^6 = 2x - 10$$

$$\int_{5}^{6} \frac{3x - 10}{x^{2} - 7x + 12} dx = \int_{5}^{6} \left(\frac{1}{x - 3} + \frac{2}{x - 4}\right) dx$$
$$= (\ln|x - 3| + 2\ln|x - 4|)|_{5}^{6}$$

$$= \ln 3 + \ln 2 = \ln 6$$

 $= \ln 3 + 2 \ln 2 - (\ln 2 + 2 \ln 1)$

$$u = \tan x \implies \frac{du}{dx} = \sec^2 x \implies dx = \frac{du}{\sec^2 x}$$

$$\int \frac{\sec^2 x}{\tan^2 x - 1} dx = \int \frac{\sec^2 x}{u^2 - 1} \frac{du}{\sec^2 x} = \int \frac{1}{u^2 - 1} du$$

$$\frac{1}{u^2 - 1} = \frac{1}{(u - 1)(u + 1)} = \frac{A}{u - 1} + \frac{B}{u + 1}$$

$$\frac{1}{u^2 - 1} = \frac{1}{(u - 1)(u + 1)} = \frac{A}{u - 1} + \frac{B}{u + 1}$$

$$\Rightarrow 1 = A(u+1) + B(u-1)$$

$$u=1 \Longrightarrow A=\frac{1}{2}$$

$$u=-1\Longrightarrow B=-\frac{1}{2}$$

$$\int \frac{1}{u^2 - 1} du = \int \left(\frac{\frac{1}{2}}{u - 1} + \frac{-\frac{1}{2}}{u + 1}\right) du$$

$$= \frac{1}{2} \ln|u - 1| - \frac{1}{2} \ln|u + 1| + C = \frac{1}{2} \ln\left|\frac{u - 1}{u + 1}\right| + C$$

$$\Rightarrow \int \frac{\sec^2 x}{\tan^2 x - 1} dx = \frac{1}{2} \ln\left|\frac{\tan x - 1}{\tan x + 1}\right| + C$$

$$u = e^{x} \implies \frac{du}{dx} = e^{x} \implies dx = \frac{du}{e^{x}}$$

$$\int \frac{e^{x}}{(e^{x} - 1)(e^{x} + 4)} dx = \int \frac{e^{x}}{(u - 1)(u + 4)} \frac{du}{e^{x}}$$

$$=\int \frac{1}{(u-1)(u+4)} du$$

$$\frac{1}{(u-1)(u+4)} = \frac{A}{u-1} + \frac{B}{u+4}$$

$$\Rightarrow 1 = A(u+4) + B(u-1) +$$

b
$$u=1 \Longrightarrow A=\frac{1}{5}$$

$$u=-4 \Longrightarrow B=-rac{1}{5}$$

$$\int \frac{1}{(u-1)(u+4)} du = \int \left(\frac{\frac{1}{5}}{u-1} + \frac{-\frac{1}{5}}{u+4} \right) du$$

$$= \frac{1}{5}\ln|u-1| - \frac{1}{5}\ln|u+4| + C = \frac{1}{5}\ln\left|\frac{u-1}{u+4}\right| + C$$

$$\Rightarrow \int \frac{e^x}{(e^x - 1)(e^x + 4)} dx = \frac{1}{5} \ln \left| \frac{e^x - 1}{e^x + 4} \right| + C$$

أتدرب وأحل المسائل صفحة 57

$$\frac{x-10}{x(x+5)} = \frac{A}{x} + \frac{B}{x+5}$$

$$\Rightarrow x - 10 = A(x + 5) + Bx$$

$$x = 0 \Longrightarrow A = -2$$

$$x = 0 \Rightarrow A = -2$$

$$x = -5 \Rightarrow B = 3$$

$$\int \frac{x-10}{x(x+5)} dx = \int \left(\frac{-2}{x} + \frac{3}{x+5}\right) dx$$

$$= -2 \ln|x| + 3 \ln|x + 5| + C$$

$$\frac{2}{1-x^2} = \frac{2}{(1-x)(1+x)} = \frac{A}{1-x} + \frac{B}{1+x}$$

$$\Rightarrow 2 = A(1+x) + B(1-x)$$

$$x = 1 \Longrightarrow A = 1$$

$$x = -1 \Rightarrow B = 1$$

$$x = -1 \Rightarrow B = 1$$

$$\int \frac{2}{1 - x^2} dx = \int \left(\frac{1}{1 - x} + \frac{1}{1 + x}\right) dx$$

$$= -\ln|1 - x| + \ln|1 + x| + C$$

$$= \ln \left| \frac{1+x}{1-x} \right| + C$$

$$\frac{4}{(x-2)(x-4)} = \frac{A}{x-2} + \frac{B}{x-4}$$

$$\Rightarrow 4 = A(x-4) + B(x-2)$$

$$x=2 \Rightarrow A=-2$$

$$x=4 \Rightarrow B=2$$

$$\int \frac{4}{(x-2)(x-4)} dx = \int \left(\frac{-2}{x-2} + \frac{2}{x-4}\right) dx$$

$$= -2 \ln|x-2| + 2 \ln|x-4| + C$$

$$=2\ln\left|\frac{x-4}{x-2}\right|+C$$

$$\frac{3x+4}{x^2+x} = \frac{3x+4}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$$

$$\Rightarrow$$
 3x + 4 = A(x + 1) + Bx

$$x = 0 \Longrightarrow A = 4$$

$$x = -1 \Rightarrow B = -1$$

$$\int \frac{3x+4}{x^2+x} dx = \int \left(\frac{4}{x} + \frac{-1}{x+1}\right) dx$$

$$= 4 \ln|x| - \ln|x + 1| + C$$

$$\frac{4}{x^2 - 4} = \frac{4}{(x - 2)(x + 2)} = \frac{A}{x - 2} + \frac{B}{x + 2}$$

$$\Rightarrow 4 = A(x+2) + B(x-2)$$

$$x=2 \Rightarrow A=1$$

$$x = -2 \Rightarrow B = -1$$

$$\int \frac{x^2}{x^2 - 4} dx = \int \left(1 + \frac{1}{x - 2} + \frac{-1}{x + 2} \right) dx$$
$$= x + \ln|x - 2| - \ln|x + 2| + C$$

$$\mathbf{n} = x + \ln \left| \frac{x-2}{x+2} \right| + C$$

$$\frac{3x-6}{x^2+x-2} = \frac{3x-6}{(x+2)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1}$$

$$\Rightarrow 3x - 6 = A(x - 1) + B(x + 2)$$

$$x = -2 \Longrightarrow A = 4$$

$$x = 1 \Rightarrow B = -1$$

$$\int \frac{3x-6}{x^2+x-2} dx = \int \left(\frac{4}{x+2} + \frac{-1}{x-1}\right) dx$$

$$= 4 \ln|x+2| - \ln|x-1| + C$$

$$\frac{4x+10}{4x^2-4x-3} = \frac{4x+10}{(2x-3)(2x+1)} = \frac{A}{2x-3} + \frac{B}{2x+1}$$

$$\Rightarrow 4x + 10 = A(2x + 1) + B(2x - 3)$$

$$x = \frac{3}{2} \Longrightarrow A = 4$$

$$x=-\frac{1}{2} \Rightarrow B=-2$$

$$\int \frac{4x+10}{4x^2-4x-3} dx = \int \left(\frac{4}{2x-3} + \frac{-2}{2x+1}\right) dx$$

$$= 2 \ln|2x - 3| - \ln|2x + 1| + C$$

$$\frac{2x^2 + 9x - 11}{x^3 + 2x^2 - 5x - 6} = \frac{2x^2 + 9x - 11}{(x - 2)(x + 1)(x + 3)} = \frac{A}{x - 2} + \frac{B}{x + 1} + \frac{C}{x + 3}$$

$$\Rightarrow 2x^2 + 9x - 11 = A(x + 1)(x + 3) + B(x - 2)(x + 3) + C(x - 2)(x + 1)$$

$$x = 2 \Rightarrow A = 1$$

 $= \ln|x-2| + 3\ln|x+1| - 2\ln|x+3| + C$

$$x = -1 \Rightarrow B = 3$$

$$x = -3 \Rightarrow C = -2$$

$$\int \frac{2x^2 + 9x - 11}{x^3 + 2x^2 - 5x - 6} dx = \int \left(\frac{1}{x - 2} + \frac{3}{x + 1} + \frac{-2}{x + 3}\right) dx$$

$$\frac{4x}{x^2 - 2x - 3} = \frac{4x}{(x - 3)(x + 1)} = \frac{A}{x - 3} + \frac{B}{x + 1}$$

$$\Rightarrow 4x = A(x + 1) + B(x - 3)$$

$$x = 3 \Rightarrow A = 3$$

$$x = -1 \Rightarrow B = 1$$

$$\int \frac{4x}{x^2 - 2x - 3} dx = \int \left(\frac{3}{x - 3} + \frac{1}{x + 1}\right) dx$$
$$= 3 \ln|x - 3| + \ln|x + 1| + C$$

$$\frac{8x^2 - 19x + 1}{(2x+1)(x-2)^2} = \frac{A}{2x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$$

$$\Rightarrow 8x^2 - 19x + 1 = A(x-2)^2 + B(2x+1)(x-2) + C(2x+1)$$

$$x = -\frac{1}{2} \Rightarrow A = 2$$

$$x = 2 \Rightarrow C = -1$$

$$x = 0 \Rightarrow 1 = 4A - 2B + C \Rightarrow B = 3$$

$$\int \frac{8x^2 - 19x + 1}{(2x+1)(x-2)^2} dx = \int \left(\frac{2}{2x+1} + \frac{3}{x-2} + \frac{-1}{(x-2)^2}\right) dx$$

$$= \ln|2x+1| + 3\ln|x-2| + \frac{1}{x-2} + C$$

$$\int \frac{9x^2 - 3x + 2}{9x^2 - 4} dx = \int \left(1 + \frac{6 - 3x}{9x^2 - 4}\right) dx$$

$$\frac{6-3x}{9x^2-4} = \frac{6-3x}{(3x-2)(3x+2)} = \frac{A}{3x-2} + \frac{B}{3x+2}$$

$$\Rightarrow$$
 6 - 3x = A(3x + 2) + B(3x - 2)

$$x = \frac{2}{3} \Rightarrow A = 1$$
 $x = -\frac{2}{3} \Rightarrow B = -2$

$$\int \frac{9x^2 - 3x + 2}{9x^2 - 4} dx = \int \left(1 + \frac{1}{3x - 2} + \frac{-2}{3x + 2}\right) dx$$

$$= x + \frac{1}{3} \ln|3x - 2| - \frac{2}{3} \ln|3x + 2| + C$$

$$\int \frac{x^3 + 2x^2 + 2}{x^2 + x} dx = \int \left(x + 1 + \frac{2 - x}{x^2 + x}\right) dx$$

$$\frac{2-x}{x^2+x} = \frac{2-x}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$$

$$\Rightarrow$$
 2 - x = A(x + 1) + Bx

$$12 x=0 \Rightarrow A=2$$

$$x = -1 \Rightarrow B = -3$$

$$\int \frac{x^3 + 2x^2 + 2}{x^2 + x} dx = \int \left(x + 1 + \frac{2}{x} + \frac{-3}{x + 1}\right) dx$$
$$= \frac{1}{2}x^2 + x + 2\ln|x| - 3\ln|x + 1| + C$$

$$\int \frac{x^2 + x + 2}{3 - 2x - x^2} dx = \int \left(-1 + \frac{5 - x}{-x^2 - 2x + 3} \right) dx$$

$$\frac{5-x}{-x^2-2x+3} = \frac{x-5}{(x+3)(x-1)} = \frac{A}{x+3} + \frac{B}{x-1}$$

$$\Rightarrow x-5=A(x-1)+B(x+3)$$

$$x = -3 \Rightarrow A = 2$$
 $x = 1 \Rightarrow B = -1$

$$\int \frac{x^2 + x + 2}{3 - 2x - x^2} dx = \int \left(-1 + \frac{2}{x + 3} + \frac{-1}{x - 1} \right) dx$$

$$= -x + 2 \ln|x + 3| - \ln|x - 1| + C$$

$$\frac{2x-4}{(x^2+4)(x+2)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+4}$$

$$\Rightarrow 2x-4 = A(x^2+4) + (Bx+C)(x+2)$$

$$x = -2 \Rightarrow A = -1$$

$$x = 0 \Rightarrow -4 = 4A + 2C \Rightarrow C = 0$$

14
$$x = 0 \Rightarrow -4 = 4A + 2C \Rightarrow C = 0$$

 $x = 1 \Rightarrow -2 = 5A + 3B + 3C \Rightarrow B = 1$

$$\int \frac{2x-4}{(x^2+4)(x+2)} dx = \int \left(\frac{-1}{x+2} + \frac{x}{x^2+4}\right) dx$$
$$= -\ln|x+2| + \frac{1}{2}\ln|x^2+4| + C$$

$$\int \frac{x^3 - 4x^2 - 2}{x^3 + x^2} dx = \int \left(1 + \frac{-5x^2 - 2}{x^3 + x^2}\right) dx$$

$$\frac{-5x^2 - 2}{x^3 + x^2} = \frac{-5x^2 - 2}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$$

$$\Rightarrow -5x^2 - 2 = Ax(x+1) + B(x+1) + Cx^2$$

$$x=0 \Longrightarrow B=-2$$

$$x = -1 \Rightarrow C = -7$$

$$x = 1 \Longrightarrow -7 = 2A + 2B + C \Longrightarrow A = 2$$

$$\int \frac{x^3 - 4x^2 - 2}{x^3 + x^2} dx = \int \left(1 + \frac{2}{x} + \frac{-2}{x^2} + \frac{-7}{x + 1}\right) dx$$

$$= x + 2\ln|x| + \frac{2}{x} - 7\ln|x + 1| + C$$

$$\frac{3-x}{2-5x-12x^2} = \frac{x-3}{12x^2+5x-2} = \frac{x-3}{(4x-1)(3x+2)} = \frac{A}{4x-1} + \frac{B}{3x+2}$$

$$\Rightarrow x - 3 = A(3x + 2) + B(4x - 1)$$

$$x = \frac{1}{4} \Rightarrow A = -1$$
 $x = -\frac{2}{3} \Rightarrow B = 1$

$$\int \frac{3-x}{2-5x-12x^2} dx = \int \left(\frac{-1}{4x-1} + \frac{1}{3x+2}\right) dx$$

$$= -\frac{1}{4}\ln|4x - 1| + \frac{1}{3}\ln|3x + 2| + C$$

$$\frac{3x^3 - x^2 + 12x - 6}{x^4 + 6x^2} = \frac{3x^3 - x^2 + 12x - 6}{x^2(x^2 + 6)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 6}$$

$$\Rightarrow 3x^3 - x^2 + 12x - 6 = Ax(x^2 + 6) + B(x^2 + 6) + (Cx + D)(x^2)$$

$$x = 0 \Rightarrow B = -1$$

$$x = 1 \Rightarrow 8 = 7A + 7B + C + D$$
....(1)

$$x = -1 \Rightarrow -22 = -7A + 7B - C + D.....(2)$$

$$x = 2 \Rightarrow 38 = 20A + 10B + 8C + 4D.....(3)$$

$$D=0$$
 بجمع (1) ، و (2) ينتج أنّ: $B=-14+2D=-14$ ، وبتعويض $B=-1$ ، نجد أن $C=15-7A$ وبطرح (2) من (1) ينتج أنّ: $C=15-7A$ أي أنّ $C=15-7A$

وبالتعويض في (3) ينتج أن:

$$20A - 10 + 8(15 - 7A) = 38$$

$$-36A = -72 \implies A = 2$$

$$C=15-7(2)=1$$

$$\int \frac{3x^3 - x^2 + 12x - 6}{x^4 + 6x^2} dx = \int \left(\frac{2}{x} + \frac{-1}{x^2} + \frac{x}{x^2 + 6}\right) dx$$

$$= 2 \ln|x| + \frac{1}{x} + \frac{1}{2} \ln|x^2 + 6| + C$$

$$\frac{5x-2}{(x-2)^2} = \frac{A}{x-2} + \frac{B}{(x-2)^2}$$

$$\Rightarrow 5x - 2 = A(x - 2) + B$$

$$x=2 \Rightarrow B=8$$

$$x = 0 \Rightarrow -2 = -2A + B \Rightarrow A = 5$$

$$\int \frac{5x-2}{(x-2)^2} dx = \int \left(\frac{5}{x-2} + \frac{8}{(x-2)^2}\right) dx$$

Valianal =
$$5 \ln |x - 2| - \frac{8}{x - 2} + C$$
 and

u = x - 2 ملاحظة: يمكن حل هذا التكامل بالتعويض

$$u = 5x - 2$$
, $dv = (x - 2)^{-2}$ کما يمكن حله بالأجزاء حيث:

$$\frac{6+3x-x^2}{x^3+2x^2} = \frac{6+3x-x^2}{x^2(x+2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+2}$$

$$\Rightarrow$$
 6 + 3x - x² = Ax(x + 2) + B(x + 2) + C(x²)

$$x = 0 \Rightarrow B = 3$$

$$x = -2 \Rightarrow C = -1$$

$$x = 1 \Rightarrow 8 = 3A + 3B + C \Rightarrow A = 0$$

$$\int_{2}^{4} \frac{6+3x-x^{2}}{x^{3}+2x^{2}} dx = \int_{2}^{4} \left(\frac{3}{x^{2}} + \frac{-1}{x+2}\right) dx$$

$$= \left(-\frac{3}{x} - \ln|x+2|\right)\Big|_2^4$$

$$= -\frac{3}{4} - \ln 6 + \frac{3}{2} + \ln 4 = \frac{3}{4} + \ln \frac{2}{3}$$

$$\frac{9x^2+4}{9x^2-4}=1+\frac{8}{9x^2-4}$$

$$\frac{8}{9x^2-4} = \frac{8}{(3x-2)(3x+2)} = \frac{A}{3x-2} + \frac{B}{3x+2}$$

$$\Rightarrow 8 = A(3x+2) + B(3x-2)$$

$$x = \frac{2}{3} \Longrightarrow A = 2$$

$$x = -\frac{2}{3} \Longrightarrow B = -2$$

$$\int_{-\frac{1}{2}}^{\frac{1}{3}} \frac{9x^2 + 4}{9x^2 - 4} dx = \int_{-\frac{1}{2}}^{\frac{1}{3}} \left(1 + \frac{2}{3x - 2} + \frac{-2}{3x + 2} \right) dx$$

$$= \left(x + \frac{2}{3}\ln|3x - 2| - \frac{2}{3}\ln|3x + 2|\right)\Big|_{\frac{1}{3}}^{\frac{1}{3}}$$

$$= \left(x + \frac{2}{3} \ln \left| \frac{3x - 2}{3x + 2} \right| \right) \Big|_{-\frac{1}{3}}^{\frac{1}{3}}$$

$$= \frac{1}{3} + \frac{2}{3} \ln \frac{1}{3} + \frac{1}{3} - \frac{2}{3} \ln 3 = \frac{2}{3} - \frac{4}{3} \ln 3$$

$$\frac{17 - 5x}{(2x+3)(2-x)^2} = \frac{A}{2x+3} + \frac{B}{2-x} + \frac{C}{(2-x)^2}$$

$$\Rightarrow 17 - 5x = A(2-x)^2 + B(2-x)(2x+3) + C(2x+3)$$

$$x = -\frac{3}{2} \Rightarrow A = 2$$

$$x = -\frac{3}{2} \Rightarrow A = 2$$
$$x = 2 \Rightarrow C = 1$$

$$21 x = 0 \Rightarrow 17 = 4A + 6B + 3C \Rightarrow B = 1$$

$$\int_0^1 \frac{17 - 5x}{(2x+3)(2-x)^2} dx = \int_0^1 \left(\frac{2}{2x+3} + \frac{1}{2-x} + \frac{1}{(2-x)^2} \right) dx$$
$$= \left(\ln|2x+3| - \ln|2-x| + \frac{1}{2-x} \right) \Big|_0^1$$

$$= \ln 5 + 1 - \ln 3 + \ln 2 - \frac{1}{2} = \frac{1}{2} + \ln \frac{10}{3}$$

$$\frac{4}{16x^2 + 8x - 3} = \frac{4}{(4x - 1)(4x + 3)} = \frac{A}{4x - 1} + \frac{B}{4x + 3}$$
$$\Rightarrow 4 = A(4x + 3) + B(4x - 1)$$

$$x = \frac{1}{4} \Longrightarrow A = 1$$
$$x = -\frac{3}{4} \Longrightarrow B = -1$$

$$\int_{1}^{4} \frac{4}{16x^{2} + 8x - 3} dx = \int_{1}^{4} \left(\frac{1}{4x - 1} + \frac{-1}{4x + 3} \right) dx$$
$$= \left(\frac{1}{4} \ln|4x - 1| - \frac{1}{4} \ln|4x + 3| \right) \Big|^{4}$$

$$= \left(\frac{1}{4} \ln \left| \frac{4x - 1}{4x + 3} \right| \right) \Big|_{1}^{4}$$

$$= \frac{1}{4} \left(\ln \frac{15}{19} - \ln \frac{3}{7} \right) = \frac{1}{4} \ln \frac{35}{19}$$

$$\frac{5x+5}{x^2+x-6} = \frac{5x+5}{(x-2)(x+3)} = \frac{A}{x-2} + \frac{B}{x+3}$$
$$\Rightarrow 5x+5 = A(x+3) + B(x-2)$$

$$x=2 \Rightarrow A=3$$

$$\int_{3}^{4} \frac{5x+5}{x^{2}+x-6} dx = \int_{3}^{4} \left(\frac{3}{x-2} + \frac{2}{x+3}\right) dx$$
$$= \left(3 \ln|x-2| + 2 \ln|x+3|\right) \Big|_{3}^{4}$$

$$= 3 \ln 2 + 2 \ln 7 - 2 \ln 6 = \ln \frac{98}{9}$$

$$\frac{4}{x^3 - 4x^2 + 4x} = \frac{4}{x(x-2)^2} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$$

$$\Rightarrow 4 = A(x-2)^2 + Bx(x-2) + Cx$$

$$x = 0 \Rightarrow A = 1 \qquad x = 2 \Rightarrow C = 2$$

$$x = 1 \Rightarrow 4 = A - B + C \Rightarrow B_{4} = -1$$

$$A = \int_{3}^{4} \frac{4}{x^{3} - 4x^{2} + 4x} dx = \int_{3}^{4} \left(\frac{1}{x} + \frac{-1}{x - 2} + \frac{2}{(x - 2)^{2}}\right) dx$$

$$= \left(\ln|x| - \ln|x - 2| - \frac{2}{x - 2}\right)\Big|_{3}^{4}$$

$$= \left(\ln \left| \frac{x}{x-2} \right| - \frac{2}{x-2} \right) \Big|_{3}^{4} = 1 + \ln \frac{2}{3}$$

$$A = \int_0^1 \frac{1}{x^2 - 5x + 6} \, dx$$

$$\frac{1}{x^2 - 5x + 6} = \frac{1}{(x - 3)(x - 2)} = \frac{A}{x - 3} + \frac{B}{x - 2}$$

$$\implies 1 = A(x-2) + B(x-3)$$

$$x = 3 \Rightarrow A = 1 \quad x = 2 \Rightarrow B = -1$$

$$A = \int_0^1 \frac{1}{x^2 - 5x + 6} dx = \int_0^1 \left(\frac{1}{x - 3} + \frac{-1}{x - 2} \right) dx$$
$$= (\ln|x - 3| - \ln|x - 2|)|_0^1 = \ln\frac{4}{3}$$

$$A = \int_{1}^{2} \frac{x^{2} + 1}{3x - x^{2}} dx$$

$$\frac{x^{2} + 1}{3x - x^{2}} = -1 + \frac{3x + 1}{3x - x^{2}}$$

$$\frac{3x + 1}{3x - x^{2}} = \frac{3x + 1}{x(3 - x)} = \frac{A}{x} + \frac{B}{3 - x} \implies 3x + 1 = A(3 - x) + Bx$$

$$26 \qquad x = 0 \implies A = \frac{1}{3} \quad x = 3 \implies B = \frac{10}{3}$$

$$A = \int_{1}^{2} \frac{x^{2} + 1}{3x - x^{2}} dx = \int_{1}^{2} \left(-1 + \frac{1}{3} + \frac{10}{3 - x} \right) dx$$

$$= \left(-x + \frac{1}{3} \ln|x| - \frac{10}{3} \ln|3 - x| \right) \Big|_{1}^{2} = -1 + \frac{11}{3} \ln 2$$

$$27 \qquad f(x) = 0 \implies 4x - 5 = 0 \implies x = \frac{5}{4} \implies A\left(\frac{5}{4}, 0\right)$$

$$28 \qquad A = \int_{0}^{\frac{5}{4}} \frac{4x - 5}{2x^{2} - 5x - 3} dx = \ln|2x^{2} - 5x - 3| \frac{5}{6} = \ln\frac{49}{8} - \ln 3 = \ln\frac{49}{24}$$

$$u = \cos x \implies \frac{du}{dx} = -\sin x \implies dx = \frac{du}{-\sin x}$$

$$29 \qquad \int \frac{\sin x}{\cos x + \cos^{2}x} dx = \int \frac{\sin x}{u + u^{2}} \implies \frac{du}{-\sin x} = \int \frac{-1}{u + u^{2}} du$$

$$u = 0 \implies A = -1 \quad u = -1 \implies B = 1$$

$$\int \frac{-1}{u + u^{2}} du = \int \left(\frac{-1}{u} + \frac{1}{1 + u} \right) du$$

$$= -\ln|u| + \ln|1 + u| + C$$

$$\implies \int \frac{\sin x}{\cos x + \cos^{2}x} dx = -\ln|\cos x| + \ln|1 + \cos x| + C$$

$$= \ln\left| \frac{1 + \cos x}{\cos x} \right| + C = \ln|1 + \sec x| + C$$

$$u = \sqrt{x} \implies u^2 = x \implies dx = 2udu$$

$$\int \frac{1}{x^2 + x\sqrt{x}} dx = \int \frac{1}{u^4 + u^3} 2u du = \int \frac{2}{u^3 + u^2} du$$

$$\frac{2}{u^3 + u^2} = \frac{2}{u^2(u+1)} = \frac{A}{u} + \frac{B}{u^2} + \frac{C}{u+1}$$

$$\Rightarrow 2 = Au(u+1) + B(u+1) + Cu^2$$

$$u=0 \implies B=2$$
, $u=-1 \implies C=2$, $u=1 \implies 2=2A+2B+C$

$$\Rightarrow A = -2 \Rightarrow \int \frac{2}{u^3 + u^2} du = \int \left(\frac{-2}{u} + \frac{2}{u^2} + \frac{2}{u+1}\right) du$$

$$= -2\ln|u| - \frac{2}{u} + 2\ln|u + 1| + C$$

$$=2\ln\left|\frac{u+1}{u}\right|-\frac{2}{u}+C$$

$$=2\ln\left(\frac{\sqrt{x}+1}{\sqrt{x}}\right)-\frac{2}{\sqrt{x}}+C$$

$$u = e^x \implies \frac{du}{dx} = e^x = u \implies dx = \frac{du}{u}$$

$$\int \frac{e^{2x}}{e^{2x} + 3e^{x} + 2} dx = \int \frac{u^{2}}{u^{2} + 3u + 2} \times \frac{du}{u} = \int \frac{u}{u^{2} + 3u + 2} du$$

$$\frac{u}{u^2 + 3u + 2} = \frac{u}{(u+1)(u+2)} = \frac{A}{u+1} + \frac{B}{u+2}$$

$$\Rightarrow u = A(u+2) + B(u+1)$$

$$u = -1 \implies A = -1$$

$$u=-2 \implies B=2$$

$$\int \frac{u}{u^2 + 3u + 2} \, du = \int \left(\frac{-1}{u + 1} + \frac{2}{u + 2} \right) \, du$$

$$= -\ln|u+1| + 2\ln|u+2| + C$$

$$\Rightarrow \int \frac{e^{2x}}{e^{2x} + 3e^x + 2} dx = -\ln(e^x + 1) + 2\ln(e^x + 2) + C$$

$$u = \sin x \implies \frac{du}{dx} = \cos x \implies dx = \frac{du}{\cos x}$$

$$\int \frac{\cos x}{\sin x (\sin^2 x - 4)} dx = \int \frac{\cos x}{u(u^2 - 4)} \times \frac{du}{\cos x} = \int \frac{1}{u(u^2 - 4)} du$$

$$\frac{1}{u(u^2 - 4)} = \frac{1}{u(u - 2)(u + 2)} = \frac{A}{u} + \frac{B}{u - 2} + \frac{C}{u + 2}$$

$$\implies 1 = A(u - 2)(u + 2) + Bu(u + 2) + Cu(u - 2)$$

$$u = 0 \implies A = -\frac{1}{4}$$

$$u = 2 \implies B = \frac{1}{8}$$

$$u = -2 \implies C = \frac{1}{8}$$

$$\int \frac{1}{u(u^2 - 4)} du = \int \left(-\frac{1}{4} + \frac{1}{u} + \frac$$

$$\int \frac{1}{1+e^x} dx = \int \frac{e^{-x}}{e^{-x}+1} dx = -\int \frac{-e^{-x}}{e^{-x}+1} dx = -\ln(e^{-x}+1) + C$$

الحل الثاني بالتعويض:

$$u = e^{x} \implies \frac{du}{dx} = e^{x} = u \implies dx = \frac{du}{u}$$

$$\int \frac{1}{1+e^x} dx = \int \frac{1}{1+u} \times \frac{du}{u} = \int \frac{1}{u(1+u)} du$$

$$\frac{1}{u(1+u)} = \frac{A}{u} + \frac{B}{u+1}$$

$$\Rightarrow 1 = A(1+u) + Bu$$

$$u=0 \implies A=1$$

$$u=-1 \implies B=-1$$

$$\int \frac{1}{u(1+u)} du = \int \left(\frac{1}{u} + \frac{-1}{u+1}\right) du = \ln|u| - \ln|u+1| + C$$

$$\Rightarrow \int \frac{1}{1+e^x} dx = \ln e^x - \ln(e^x + 1) + C$$

$$= \ln \left(\frac{e^x + 1}{e^x} \right)^{-1} + C = -\ln(e^{-x} + 1) + C$$

$$\int_{0}^{\ln 2} \frac{1}{1 + e^{x}} dx = \ln e^{x} - \ln (e^{x} + 1)|_{0}^{\ln 2}$$

$$= \ln e^{\ln 2} - \ln (e^{\ln 2} + 1) - (\ln e^{0} - \ln (e^{0} + 1))$$

$$= \ln 2 - \ln 3 - 0 + \ln 2 = \ln 4 - \ln 3 = \ln \frac{4}{3}$$

$$\frac{5x^2 - 8x + 1}{2x(x - 1)^2} = \frac{A}{2x} + \frac{B}{x - 1} + \frac{C}{(x - 1)^2}$$

$$\Rightarrow 5x^2 - 8x + 1 = A(x - 1)^2 + B(2x)(x - 1) + C(2x)$$

$$x = 0 \Rightarrow A = 1$$

$$x=1 \Rightarrow C=-1$$

$$x = -1 \Rightarrow 14 = 4A + 4B - 2C \Rightarrow B = 2$$

$$\int_{4}^{9} \frac{5x^{2} - 8x + 1}{2x(x - 1)^{2}} dx = \int_{4}^{9} \left(\frac{1}{2x} + \frac{2}{x - 1} + \frac{-1}{(x - 1)^{2}} \right) dx$$
$$= \left(\frac{1}{2} \ln|x| + 2\ln|x - 1| + \frac{1}{x - 1} \right) \Big|_{x = 1}^{9}$$

$$= \frac{1}{2} \ln 9 + 2 \ln 8 + \frac{1}{8} - \frac{1}{2} \ln 4 - 2 \ln 3 - \frac{1}{3}$$

$$= \ln 3 + \ln 64 + \frac{1}{8} - \ln 2 - \ln 9 - \frac{1}{3} = \ln \frac{32}{3} - \frac{5}{24}$$

$$u = \sqrt{x} \implies u^2 = x \implies dx = 2udu$$

$$x=9 \implies u=3$$

$$x = 16 \implies u = 4$$

$$\int_{9}^{16} \frac{2\sqrt{x}}{x-4} dx = \int_{3}^{4} \frac{2u}{u^{2}-4} 2u du = \int_{3}^{4} \frac{4u^{2}}{u^{2}-4} du$$
$$= \int_{3}^{4} \left(4 + \frac{16}{u^{2}-4}\right) du$$

$$\frac{16}{u^2-4}=\frac{16}{(u-2)(u+2)}=\frac{A}{u-2}+\frac{B}{u+2}$$

$$\Rightarrow$$
 16 = $A(u+2) + B(u-2)$

$$u=2 \implies A=4 \cdot u=-2 \implies B=-4$$

$$\int_{3}^{4} \left(4 + \frac{16}{u^{2} - 4}\right) du = \int_{3}^{4} \left(4 + \frac{4}{u - 2} + \frac{-4}{u + 2}\right) du$$

$$= \left(4u + 4\ln|u - 2| - 4\ln|u + 2|\right)|_{3}^{4}$$

$$= 4\left(1 + \ln\frac{5}{2}\right)$$

$$\frac{4x^2 + 9x + 4}{2x^2 + 5x + 3} = 2 - \frac{x + 2}{2x^2 + 5x + 3}$$

$$\frac{x + 2}{2x^2 + 5x + 3} = \frac{x + 2}{(x + 1)(2x + 3)} = \frac{A}{x + 1} + \frac{B}{2x + 3}$$

$$\Rightarrow x+2 = A(2x+3) + B(x+1)$$

$$x=-1 \Rightarrow A=1$$

$$x=-\frac{3}{2} \Longrightarrow B=-1$$

$$\int_0^1 \frac{4x^2 + 9x + 4}{2x^2 + 5x + 3} \, dx = \int_0^1 \left(2 - \frac{1}{x + 1} + \frac{1}{2x + 3}\right) \, dx$$

$$= \left(2x - \ln|x+1| + \frac{1}{2}\ln|2x+3|\right)\Big|_0^1 = 2 + \frac{1}{2}\ln\frac{5}{12}$$

$$\int \frac{\sqrt{1+\sqrt{x}}}{x} \, dx$$

$$u = \sqrt{1 + \sqrt{x}} \implies \frac{du}{dx} = \frac{1}{4\sqrt{x}\sqrt{1 + \sqrt{x}}}, \quad 1 + \sqrt{x} = u^2 \implies \sqrt{x} = u^2 - 1$$

$$\Rightarrow dx = 4\sqrt{x}\sqrt{1 + \sqrt{x}}du = 4u(u^2 - 1)du$$

$$\int \frac{\sqrt{1+\sqrt{x}}}{x} dx = \int \frac{u}{(u^2-1)^2} 4u(u^2-1)du = \int \frac{4u^2}{u^2-1} du$$

$$\frac{4u^2}{u^2-1}=4+\frac{4}{u^2-1}$$

38
$$\frac{4}{u^2-1} = \frac{4}{(u-1)(u+1)} = \frac{A}{u-1} + \frac{B}{u+1}$$

$$\Rightarrow 4 = A(u+1) + B(u-1) \cdot u = 1 \Rightarrow A = 2 \cdot u = -1 \Rightarrow B = -2$$

$$\int \frac{4u^2}{u^2-1} \ du = \int \left(4 + \frac{2}{u-1} + \frac{-2}{u+1}\right) \ du$$

$$= 4u + 2\ln|u - 1| - 2\ln|u + 1| + C$$

$$1 = 4u + 2\ln\left|\frac{u-1}{u+1}\right| + C \text{ on all } C$$

$$\frac{x}{16x^4 - 1} = \frac{x}{(4x^2 + 1)(2x - 1)(2x + 1)} = \frac{Ax + B}{4x^2 + 1} + \frac{C}{2x - 1} + \frac{D}{2x + 1}$$

$$\Rightarrow x = (Ax + B)(2x - 1)(2x + 1) + C(4x^2 + 1)(2x + 1) + D(4x^2 + 1)(2x - 1)$$

$$x = \frac{1}{2} \Rightarrow C = \frac{1}{8}$$

$$x = -\frac{1}{2} \Rightarrow D = \frac{1}{8}$$

$$x = 0 \Rightarrow 0 = -B + C - D \Rightarrow B = 0$$

$$x = 1 \Rightarrow 1 = 3A + 3B + 15C + 5D \Rightarrow A = -\frac{1}{2}$$

$$\int \frac{x}{16x^4 - 1} dx = \int \left(-\frac{\frac{1}{2}x}{4x^2 + 1} + \frac{\frac{1}{8}}{2x - 1} + \frac{1}{2x + 1} \right) dx$$

$$= -\frac{1}{16} \ln(4x^2 + 1) + \frac{1}{16} \ln|2x - 1| + \frac{1}{16} \ln|2x + 1| + C$$

$$= \frac{1}{16} \ln \left| \frac{4x^2 - 1}{4x^2 + 1} \right| + C$$

$$u = x^{\frac{1}{6}} \Rightarrow \frac{du}{dx} \Rightarrow \frac{1}{6} \frac{x^{-\frac{5}{6}}}{x^6} \Rightarrow dx = 6x^{\frac{5}{6}} du = 6u^5 du$$

$$u = x^{\frac{1}{6}} \Rightarrow x = u^6 \Rightarrow \sqrt{x} = u^3, \sqrt[3]{x} = u^2$$

$$\Rightarrow \int \frac{1}{\sqrt{x} - \sqrt[3]{x}} dx = \int \frac{6u^5}{u^3 - u^2} du$$

$$= \int \frac{6u^3}{u - 1} du$$

$$= \int (6u^2 + 6u + 6 + \frac{6}{u - 1}) du$$

$$= 2u^3 + 3u^2 + 6u + 6 \ln|u - 1| + C$$

$$= 2\sqrt{x} + 3\sqrt[3]{x} + 6\sqrt[5]{x} + 6 \ln|\sqrt[5]{x} - 1| + C$$

الدرس الثالث

التكامل بالكسور الجزئية (كتاب التمارين)

$$\frac{4}{x^2+4x} = \frac{4}{x(x+4)} = \frac{A}{x} + \frac{B}{x+4}$$

$$A(x+4) + B(x) = 4$$

$$1 \qquad x = 0 \Longrightarrow A = 1$$

$$x = -4 \Rightarrow B = -1$$

$$\int \frac{4}{x^2 + 4x} \, dx = \int \left(\frac{1}{x} - \frac{1}{x + 4} \right) \, dx = \ln|x| - \ln|x + 4| + C = \ln\left| \frac{x}{x + 4} \right| + C$$

$$\frac{6}{x^2 - 9} = \frac{6}{(x - 3)(x + 3)} = \frac{A}{x - 3} + \frac{B}{x + 3}$$

$$A(x+3) + B(x-3) = 6$$

$$x=3 \Rightarrow A=1$$

$$x = 3 \Rightarrow A = 1$$

$$x = -3 \Rightarrow B = -1$$

$$\int \frac{16}{x^2 - 9} dx = \int \left(\frac{1}{x - 3} - \frac{1}{x + 3} \right) dx$$
 Mational Center

$$= \ln|x-3| - \ln|x+3| + C = \ln\left|\frac{x-3}{x+3}\right| + C$$

$$\frac{x^2 - 3x + 8}{x^3 - 3x - 2} = \frac{x^2 - 3x + 8}{(x - 2)(x + 1)^2} = \frac{A}{x - 2} + \frac{B}{x + 1} + \frac{C}{(x + 1)^2}$$

$$A(x+1)^2 + B(x-2)(x+1) + C(x-2) = x^2 - 3x + 8$$

$$x=2 \Rightarrow A=\frac{2}{3}$$
 $(x=-1) \Rightarrow C=-4$

$$x = 0 \Rightarrow A - 2B - 2C = 8 \Rightarrow \frac{2}{3} - 2B + 8 = 8 \Rightarrow B = \frac{1}{3}$$

$$\int \frac{x^2 - 3x + 8}{x^3 - 3x - 2} \, dx = \int \left(\frac{\frac{2}{3}}{x - 2} + \frac{\frac{1}{3}}{x + 1} - \frac{4}{(x + 1)^2}\right) \, dx$$

$$= \frac{2}{3} \ln|x - 2| + \frac{1}{3} \ln|x + 1| + \frac{4}{x + 1} + C$$

$$x - 10 \qquad x - 10 \qquad A \qquad B$$

$$\frac{x-10}{x^2-2x-8} = \frac{x-10}{(x-4)(x+2)} = \frac{A}{x-4} + \frac{B}{x+2}$$

$$A(x+2) + B(x-4) = x - 10$$

$$x=4 \Longrightarrow A=-1$$

$$x = -2 \Rightarrow B = 2$$

$$\int \frac{x-10}{x^2-2x-8} dx = \int \left(-\frac{1}{x-4} + \frac{2}{x+2}\right) dx$$

$$= -\ln|x-4| + 2\ln|x+2| + C$$

$$\frac{2x^2 + 6x - 2}{2x^2 + x - 1} = 1 + \frac{5x - 1}{2x^2 + x - 1} = 1 + \frac{5x - 1}{(x + 1)(2x - 1)}$$

$$=1+\frac{A}{x+1}+\frac{B}{2x-1}$$

$$A(2x-1) + B(x+1) = 5x - 1$$

$$x = -1 \Rightarrow A = 2$$

$$x = -1 \Rightarrow A = 2$$
 for all Center $x = \frac{1}{2} \Rightarrow B = 1$

$$\int \frac{2x^2 + 6x - 2}{2x^2 + x - 1} dx = \int \left(1 + \frac{2}{x + 1} + \frac{1}{2x - 1}\right) dx$$

$$= x + 2\ln|x + 1| + \frac{1}{2}\ln|2x - 1| + C$$

طريق التفوق في الرياضيات :

$$\frac{4}{x^3-2x^2} = \frac{4}{x^2(x-2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-2}$$

$$A(x)(x-2) + B(x-2) + C(x^2) = 4$$

$$x=0 \Longrightarrow B=-2$$
 , $x=2 \Longrightarrow C=1$

$$x = 0 \Longrightarrow B = -2$$
 $x = 2 \Longrightarrow C = 1$
 $x = 1 \Longrightarrow -A - B + C = 4 \Longrightarrow -A + 2 + 1 = 4 \Longrightarrow A = -1$

$$\int \frac{4}{x^3 - 2x^2} \, dx = \int \left(\frac{-1}{x} + \frac{-2}{x^2} + \frac{1}{x - 2} \right) \, dx$$

$$= -\ln|x| + \frac{2}{x} + \ln|x - 2| + C = \ln\left|\frac{x - 2}{x}\right| + \frac{2}{x} + C$$

$$\frac{x-1}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$$

$$A(x)(x+1) + B(x+1) + C(x^2) = x-1$$

10
$$x=0 \Rightarrow B=-1$$
 $x=-1 \Rightarrow C=-2$

$$x = 0 \Rightarrow B = -1$$
 $x = -1 \Rightarrow C = -2$
 $x = 1 \Rightarrow 2A + 2B + C = 0 \Rightarrow 2A - 2 - 2 = 0 \Rightarrow A = 2$

$$\int_{1}^{5} \frac{x-1}{x^{2}(x+1)} dx = \int_{1}^{5} \left(\frac{2}{x} + \frac{-1}{x^{2}} + \frac{-2}{x+1}\right) dx$$

$$= \left(2\ln|x| + \frac{1}{x} - 2\ln|x - 2|\right)\Big|_{1}^{5} = \left(\frac{1}{x} + 2\ln\left|\frac{x}{x - 2}\right|\right)\Big|_{1}^{5} = 2\ln\frac{5}{3} - \frac{4}{5}$$

$$\frac{4-x}{(x-2)^2} = \frac{A}{x-2} + \frac{B}{(x-2)^2}$$

$$A(x-2) + B = 4 - x$$

$$x=2 \Rightarrow B=2$$

11
$$x = 0 \Rightarrow -2A + B = 4 \Rightarrow -2A + 2 = 4 \Rightarrow A = -1$$

$$\int_{7}^{12} \frac{4-x}{(x-2)^2} dx = \int_{7}^{12} \left(\frac{-1}{x-2} + \frac{2}{(x-2)^2} \right) dx$$

$$= \left(-\ln|x-2| - \frac{2}{x-2}\right)\Big|_{7}^{12} = -\ln 10 - \frac{1}{5} + \ln 5 + \frac{2}{5} = \frac{1}{5} + \ln \frac{1}{2}$$

$$\frac{4}{x^2 + 8x + 15} = \frac{4}{(x+5)(x+3)} = \frac{A}{x+5} + \frac{B}{x+3}$$

$$A(x+3) + B(x+5) = 4$$

$$x = -5 \Rightarrow A = -2$$
 $x = -3 \Rightarrow B = 2$

$$x = -5 \implies A = -2 \quad x = -3 \implies B = 2$$

$$\int_{1}^{2} \frac{4}{x^{2} + 8x + 15} dx = \int_{1}^{2} \left(\frac{-2}{x + 5} + \frac{2}{x + 3}\right) dx$$

$$= (-2\ln|x+5|+2\ln|x+3|)|_1^2 = \left(2\ln\left|\frac{x+3}{x+5}\right|\right)\Big|_1^2$$

$$=2\ln\frac{5}{7}-2\ln\frac{2}{3}=2\ln\frac{15}{14}$$

$$\frac{10x^2 - 26x + 10}{2x^2 - 5x} = 5 + \frac{-x + 10}{2x^2 - 5x} = 5 + \frac{10 - x}{x(2x - 5)} = 5 + \frac{A}{x} + \frac{B}{2x - 5}$$

13
$$A(2x-5) + B(x) = 10 - x$$

$$x = 0 \Longrightarrow A = -2$$
 $x = \frac{5}{2} \Longrightarrow B = 3$

$$\int_{1}^{2} \frac{10x^{2} - 26x + 10}{2x^{2} - 5x} dx = \int_{1}^{2} \left(5 + \frac{-2}{x} + \frac{3}{2x - 5}\right) dx$$

$$= \left(5x - 2\ln|x| + \frac{3}{2}\ln|2x - 5|\right)\Big|_{1}^{2} = 10 - 2\ln 2 - 5 - \frac{3}{2}\ln 3 = 5 - \ln 12\sqrt{3}$$

$$\frac{25}{(x+1)(2x-3)^2} = \frac{A}{x+1} + \frac{B}{2x-3} + \frac{C}{(2x-3)^2}$$

$$A(2x-3)^2 + B(x+1)(2x-3) + C(x+1) = 25$$

14
$$x = -1 \Rightarrow A = 1$$
 $x = \frac{3}{2} \Rightarrow C = 10$

$$x = 0 \Rightarrow 9A - 3B + C = 25 \Rightarrow 9 - 3B + 10 = 25 \Rightarrow B = -2$$

$$\int_{2}^{5} \frac{25}{(x+1)(2x-3)^{2}} dx = \int_{2}^{5} \left(\frac{1}{x+1} + \frac{-2}{2x-3} + \frac{10}{(2x-3)^{2}} \right) dx$$

$$= \left(\ln|x+1| - \ln|2x-3| - \frac{5}{2x-3} \right) \Big|_{2}^{5} = \left(\ln\left| \frac{x+1}{2x-3} \right| - \frac{5}{2x-3} \right) \Big|_{2}^{5}$$

$$= \left(\ln\frac{6}{7} - \frac{5}{7}\right) - (\ln 3 - 5) = \frac{30}{7} + \ln\frac{2}{7}$$

$$u = e^x \Rightarrow du = e^x dx \Rightarrow dx = \frac{du}{e^x}$$

$$\int \frac{e^{2x} + e^x}{(e^{2x} + 1)(e^x - 1)} dx = \int \frac{e^x(u + 1)}{(u^2 + 1)(u - 1)} \times \frac{du}{e^x} = \int \frac{u + 1}{(u^2 + 1)(u - 1)} du$$

$$\frac{u+1}{(u^2+1)(u-1)} = \frac{Au+B}{u^2+1} + \frac{C}{u-1}$$

$$(Au + B)(u - 1) + C(u^2 + 1) = u + 1$$

18
$$u=1 \Rightarrow C=1$$

$$u = 0 \Rightarrow -B + C = 1 \Rightarrow -B + 1 = 1 \Rightarrow B = 0$$

$$u = -1 \Rightarrow 2A - 2B + 2C = 0 \Rightarrow 2A + 2 = 0 \Rightarrow A = -1$$

$$\int \frac{e^{2x} + e^x}{(e^{2x} + 1)(e^x - 1)} dx = \int \left(\frac{-u}{u^2 + 1} + \frac{1}{u - 1}\right) du$$

$$= -\frac{1}{2}\ln(u^2+1) + \ln|u-1| + C = -\frac{1}{2}\ln(e^{2x}+1) + \ln|e^x-1| + C$$

$$u = \sin x \Rightarrow \frac{du}{dx} = \cos x \Rightarrow dx = \frac{du}{\cos x}$$

$$\int \frac{5\cos x}{\sin^2 x + 3\sin x - 4} dx = \int \frac{5\cos x}{u^2 + 3u - 4} \times \frac{du}{\cos x} = \int \frac{5}{u^2 + 3u - 4} du$$

$$\frac{5}{u^2+3u-4}=\frac{5}{(u+4)(u-1)}=\frac{A}{u+4}+\frac{B}{u-1}$$

$$A(u-1) + B(u+4) = 5$$

19
$$u=1 \Rightarrow B=1$$

$$u=-4 \Rightarrow A=-1$$

$$\int \frac{5}{u^2 + 3u - 4} du = \int \left(\frac{-1}{u + 4} + \frac{1}{u - 1}\right) du = -\ln|u + 4| + \ln|u - 1| + C$$

$$\Rightarrow \int \frac{5\cos x}{\sin^2 x + 3\sin x - 4} dx = -\ln(4 + \sin x) + \ln|-1 + \sin x| + C$$

$$= \ln \left| \frac{-1 + \sin x}{4 + \sin x} \right| + C$$

$$u = \tan x \Rightarrow \frac{du}{dx} = \sec^2 x \Rightarrow du = \sec^2 x dx$$

$$\int \frac{\sec^2 x}{\tan^2 x + 5 \tan x + 6} dx = \int \frac{1}{u^2 + 5u + 6} du$$

$$\frac{1}{u^2 + 5u + 6} = \frac{1}{(u+3)(u+2)} = \frac{A}{u+3} + \frac{B}{u+2}$$

$$A(u+2) + B(u+3) = 1$$

$$u = -3 \Rightarrow A = -1$$
 $u = -2 \Rightarrow B = 1$

$$\Rightarrow \int \frac{1}{u^2 + 5u + 6} du = \int \left(\frac{-1}{u + 3} + \frac{1}{u + 2} \right) du = \ln|u + 2| - \ln|u + 3| + C$$

$$\Rightarrow \int \frac{\sec^2 x}{\tan^2 x + 5\tan x + 6} dx = \ln \left| \frac{2 + \tan x}{3 + \tan x} \right| + C$$

$$\frac{4x}{x^2 - 2x - 3} = \frac{4x}{(x - 3)(x + 1)} = \frac{A}{x - 3} + \frac{B}{x + 1}$$

$$A(x+1) + B(x-3) = 4x$$

21
$$r=3 \Rightarrow A=3$$
 $r=-1 \Rightarrow R=1$

$$A(x+1) + B(x-3) = 4x$$
21 $x = 3 \Rightarrow A = 3$ $x = -1 \Rightarrow B = 1$

$$\int_{-\pi}^{1} \frac{4x}{x^2 - 2x - 3} dx = \int_{-\pi}^{1} \left(\frac{3}{x - 3} + \frac{1}{x + 1}\right) dx = (3 \ln|x - 3| + \ln|x + 1|)|_{0}^{1}$$

=
$$(3 \ln 2 + \ln 2) - (3 \ln 3) = \ln 8 + \ln 2 - \ln 27 = \ln \frac{16}{27}$$

$$\frac{1}{2x^2+x-1} = \frac{1}{(2x-1)(x+1)} = \frac{A}{2x-1} + \frac{B}{x+1}$$

$$A(x+1) + B(2x-1) = 1$$

$$x = -1 \Longrightarrow B = -\frac{1}{3} \quad x = \frac{1}{2} \Longrightarrow A = \frac{2}{3}$$

$$\int_{1}^{p} \frac{1}{2x^{2} + x - 1} dx = \int_{1}^{p} \left(\frac{\frac{2}{3}}{2x - 1} + \frac{-\frac{1}{3}}{x + 1} \right) dx$$

$$= \left(\frac{1}{3}\ln|2x - 1| - \frac{1}{3}\ln|x + 1|\right)\Big|_{1}^{p} = \left(\frac{1}{3}\ln|2p - 1| - \frac{1}{3}\ln|p + 1|\right) - \left(-\frac{1}{3}\ln 2\right)$$

$$\left| = \frac{1}{3} \ln \left| \frac{2(2p-1)}{p+1} \right| = \frac{1}{3} \ln \left(\frac{4p-2}{p+1} \right) , p > 1$$

الدرس الرابع

التكامل بالأجزاء (كتاب الطالب)

X	مسئلة اليوم صفحة 60		
	$S(t) = \int 350 \ln(t+1) dt$		
ional Cen	$u = \ln(t+1)$ $dv = 350 dt$ $du = \frac{1}{t+1} dt$ $v = 350 t$		
almodum Greeks	$\int u dv = uv - \int v du$		
	$\int 350 \ln(1+t)dt = 350t \ln(t+1) - \int \frac{350t}{t+1}dt$		
بـــالله المطالحة الميز السّاد	$=350t\ln(t+1)-\int (350-\frac{350}{t+1})dt$		
tional Cen	Onal Can at Nations = $350t \ln(t+1) - 350t + 350 \ln(t+1) + C$ and		
	$S(t) = 0 - 0 + 0 + C = 0 \implies C = 0$		
	$S(t) = 350t \ln(t+1) - 350t + 350 \ln(t+1)$		
	أتحقق من فهمي صفحة 63		
lestic:	$u = x$ $dv = \sin x dx$		
	$du = dx$ $v = -\cos x$		
$\int x \sin x dx = -x \cos x - \int -\cos x dx = -x \cos x + \sin x$			
	$u = \ln x \qquad dv = x^2 dx$		
	$du = \frac{1}{x} dx \text{ in all } v = \frac{1}{3}x^3$		
b	$du = \frac{1}{x} dx$ $\int x^2 \ln x dx = \frac{1}{3} x^3 \ln x - \int \frac{1}{3} x^2 dx = \frac{1}{3} x^3 \ln x - \frac{1}{9} x^3 + C$		

ا.ایاد الحمد 0795604563

$$du = dx$$
 $v = -\frac{2}{9}(7-3x)^{\frac{3}{2}}$

$$\int x\sqrt{7-3x}\,dx = -\frac{2}{9}x(7-3x)^{\frac{3}{2}} - \int -\frac{2}{9}(7-3x)^{\frac{3}{2}}\,dx$$

$$=-\frac{2}{9}x(7-3x)^{\frac{3}{2}}-\frac{4}{135}(7-3x)^{\frac{5}{2}}+C$$

$$u = 3x dv = e^{4x} dx$$

$$du = 3dx v = \frac{1}{4}e^{4x}$$

$$\int 3xe^{4x} \, dx = \frac{3}{4}xe^{4x} - \int \frac{3}{4}e^{4x} \, dx$$

$$= \frac{3}{4}xe^{4x} - \frac{3}{16}e^{4x} + C$$

$$u = x^2 dv = \sin x \ dx$$

$$du = 2x dx$$
 $v = -\cos x$

$$\int x^2 \sin x \ dx = -x^2 \cos x - \int -2x \cos x \ dx$$

$$\int x^2 \sin x \, dx = -x^2 \cos x + \int 2x \cos x \, dx$$

$$u = 2x \qquad dv = \cos x \ dx$$

$$du = 2 dx v = \sin x$$

$$\int x^2 \sin x \ dx = -x^2 \cos x + 2x \sin x - \int 2 \sin x \ dx$$

$$= -x^2 \cos x + 2x \sin x + 2 \cos x + C$$

ral Ceni
$$du=3x^2dx$$
 and C $v=rac{1}{4}e^{4x}$. National Center

$$\int x^3 e^{4x} \ dx = \frac{1}{4} x^3 e^{4x} - \int \frac{3}{4} x^2 e^{4x} \ dx$$

$$u = \frac{3}{4}x^2 \qquad dv = e^{4x} dx$$

$$du = \frac{3}{2}x \, dx \qquad v = \frac{1}{4}e^{4x}$$

b
$$\int x^3 e^{4x} dx = \frac{1}{4} x^3 e^{4x} - \frac{3}{16} x^2 e^{4x} + \int \frac{3}{8} x e^{4x} dx$$

$$u = \frac{3}{8}x \qquad dv = e^{4x} dx$$

$$du = \frac{3}{8} dx \qquad v = \frac{1}{4} e^{4x}$$

$$\int x^3 e^{4x} dx = \frac{1}{4} x^3 e^{4x} - \frac{3}{16} x^2 e^{4x} + \frac{3}{32} x e^{4x} - \int \frac{3}{32} e^{4x} dx$$
$$= \frac{1}{4} x^3 e^{4x} - \frac{3}{16} x^2 e^{4x} + \frac{3}{32} x e^{4x} - \frac{3}{128} e^{4x} + C$$

$$\int \frac{\sin x}{e^x} dx = \int \sin x \, e^{-x} \, dx$$

$$u = \sin x$$
 $dv = e^{-x} dx$

$$u = \sin x$$
 $dv = e^{-x} dx$
 $du = \cos x dx$ $v = -e^{-x}$

$$\int \sin x \, e^{-x} \, dx = -\sin x \, e^{-x} - \int -e^{-x} \cos x \, dx$$

$$\int \sin x \, e^{-x} \, dx = -\sin x \, e^{-x} + \int e^{-x} \cos x \, dx$$

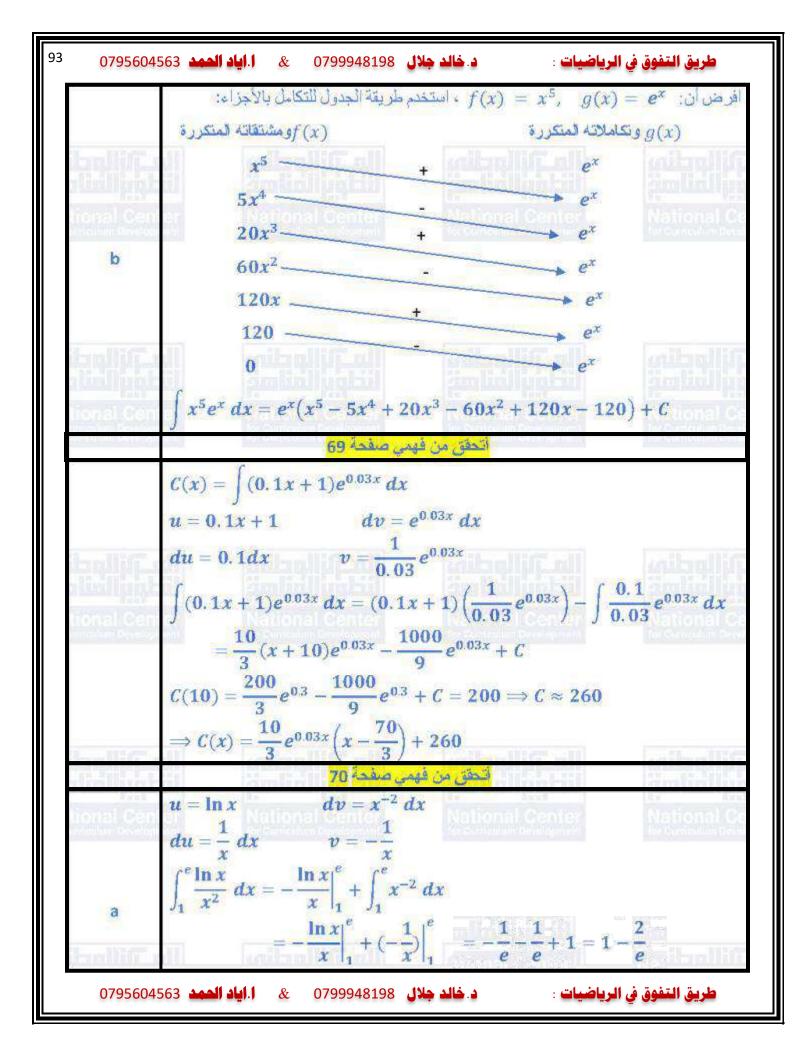
$$u = \cos x$$
 $dv = e^{-x} dx$

$$du = -\sin x \ dx \qquad \qquad v = -e^{-x}$$

$$\int \sin x \, e^{-x} \, dx = -\sin x \, e^{-x} + e^{-x} \cos x - \int e^{-x} \sin x \, dx$$

$$\Rightarrow 2 \int \sin x \, e^{-x} \, dx = e^{-x} (-\sin x + \cos x) + C$$

$$\int \sin x e^{-x} \, dx = \frac{1}{2} e^{-x} (-\sin x + \cos x) + C$$



$$u = x dv = e^{-2x} dx$$

$$du = dx v = -\frac{1}{2} e^{-2x}$$

$$\int_{0}^{1} x e^{-2x} dx = -\frac{1}{2} x e^{-2x} \Big|_{0}^{1} + \int_{0}^{1} \frac{1}{2} e^{-2x} dx$$

$$= -\frac{1}{2} x e^{-2x} \Big|_{0}^{1} + -\frac{1}{4} e^{-2x} \Big|_{0}^{1}$$

$$= -\frac{e^{-2}}{2} - \frac{e^{-2}}{4} + \frac{1}{4} = \frac{1}{4} - \frac{3}{4e^{2}}$$

أتحقق من فهمي صفحة 71

$$\int (x^3 + x^5) \sin x^2 \, dx = \int x^3 \sin x^2 \, dx + \int x^5 \sin x^2 \, dx$$

نجد كل تكامل على حدة. فنجد التكامل الأيسر كما يأتي:

$$y = x^2 \implies \frac{dy}{dx} = 2x \implies dx = \frac{dy}{2x}$$

$$\int x^3 \sin x^2 dx = \int x^3 \sin y \frac{dy}{2x} = \frac{1}{2} \int x^2 \sin y dy$$

$$= \frac{1}{2} \int y \sin y \, dy$$

$$u = y$$
 $dv = \sin y$

$$du = dy$$
 $v = -\cos y$

$$\int y \sin y \, dy = -y \cos y - \int -\cos y \, dy$$

$$= -y\cos y + \sin y$$

$$\int x^3 \sin x^2 dx = -\frac{1}{2} x^2 \cos x^2 + \frac{1}{2} \sin x^2 + C$$

$$\int x^5 \sin x^2 dx = \int x^5 \sin y \frac{dy}{2x} = \frac{1}{2} \int x^4 \sin y dy$$
$$= \frac{1}{2} \int y^2 \sin y dy$$

$$u = y^2$$
 $dv = \sin y$

$$du = 2ydy$$
 $v = -\cos y$

$$\int y^2 \sin y \, dy = -y^2 \cos y - \int -2y \cos y \, dy$$

$$= -y^2 \cos y + 2y \sin y - 2 \int \sin y \, dy$$

$$=-y^2\cos y + 2y\sin y + 2\cos y$$

$$\int x^5 \sin x^2 dx = \frac{-1}{2} x^4 \cos x^2 + x^2 \sin x^2 + \cos x^2 + C$$

$$\int (x^3 + x^5) \sin x^2 dx = -\frac{1}{2} x^2 \cos x^2 + \frac{1}{2} \sin x^2 - \frac{1}{2} x^4 \cos x^2 + x^2 \sin x^2 + \cos x^2 + C$$

$$y = x^{2} \implies \frac{dy}{dx} = 2x \implies dx = \frac{dy}{2x}$$

$$\int x^{5}e^{x^{2}} dx = \int x^{5}e^{y} \frac{dy}{2x} = \int \frac{1}{2}x^{4}e^{y} dy = \frac{1}{2}\int y^{2}e^{y} dy$$

$$u = y^{2} \qquad dv = e^{y} dy$$

$$du = 2ydy \qquad v = e^{y}$$

$$\int y^{2}e^{y} dy = y^{2}e^{y} - \int 2ye^{y} dy$$

$$= y^{2}e^{y} - 2ye^{y} + \int 2e^{y} dy$$

$$= y^{2}e^{y} - 2ye^{y} + 2e^{y} = (y^{2} - 2y + 2)e^{y}$$

$$\int x^{5}e^{x^{2}} dx = (\frac{1}{2}x^{4} - x^{2} + 1)e^{x^{2}} + C$$

$$u = x + 1 \qquad dv = \cos x dx$$

$$du = dx \qquad v = \sin x$$

$$\int (x + 1)\cos x dx = (x + 1)\sin x - \int \sin x dx$$

$$= (x + 1)\sin x + \cos x + C$$

$$u = x \qquad dv = e^{\frac{1}{2}x} dx \qquad \text{National Center}$$

$$du = dx \qquad v = 2e^{\frac{1}{2}x}$$

$$2 \qquad \int xe^{\frac{1}{2}x} dx = 2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} dx$$

$$= 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} + C$$

$$u = 2x^{2} - 1 dv = e^{-x} dx$$

$$du = 4x dx v = -e^{-x}$$

$$\int (2x^{2} - 1)e^{-x} dx = -(2x^{2} - 1)e^{-x} + \int 4xe^{-x} dx$$

بالأجزاء مرة أخرى:

$$u = 4x dv = e^{-x} dx$$

$$du = 4 dx v = -e^{-x}$$

$$\int (2x^2 - 1)e^{-x} dx = -(2x^2 - 1)e^{-x} - 4xe^{-x} + \int 4e^{-x} dx$$

$$= -(2x^{2} - 1)e^{-x} - 4xe^{-x} - 4e^{-x} + C$$
$$= -e^{-x}(2x^{2} + 4x + 3) + C$$

$$\int \ln \sqrt{x} \ dx = \int \frac{1}{2} \ln x \ dx$$

$$u = \ln x \qquad dv = \frac{1}{2} dx$$

$$du = \frac{1}{x} dx \qquad v = \frac{1}{2}x$$

$$\int \frac{1}{2} \ln x \ dx = \frac{1}{2} x \ln x - \int \frac{1}{2} \ dx$$

$$=\frac{1}{2}x\ln x-\frac{1}{2}x+C$$

$$\int x \sin x \cos x \ dx = \int \frac{1}{2} x \sin 2x \ dx \text{ for all Games}$$

$$u=\frac{1}{2}x$$

$$u = \frac{1}{2}x \qquad dv = \sin 2x \ dx$$

$$du = \frac{1}{2}$$

$$du = \frac{1}{2} dx \qquad v = -\frac{1}{2} \cos 2x$$

$$\int x \sin x \cos x \ dx = -\frac{1}{4} x \cos 2x + \int \frac{1}{4} \cos 2x \ dx$$

$$Valiana = -\frac{1}{4}x\cos 2x + \frac{1}{8}\sin 2x + C$$

$$u = x dv = \sec x \tan x dx$$

$$du = dx v = \sec x$$

$$\int x \sec x \tan x dx = x \sec x - \int \sec x dx$$

$$= x \sec x - \int \sec x \times \frac{\sec x + \tan x}{\sec x + \tan x} dx$$

$$= x \sec x - \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} dx$$

$$= x \sec x - \ln|\sec x + \tan x| + C$$

$$\int \frac{x}{\sin^2 x} dx = \int x \csc^2 x \, dx$$

$$u = x \qquad dv = \csc^2 x \, dx$$

$$du = dx \qquad v = -\cot x$$

$$\int x \csc^2 x \, dx = -x \cot x + \int \cot x \, dx$$

$$= -x \cot x + \int \frac{\cos x}{\sin x} \, dx$$

$$u = \ln x$$

$$dv = x^{-3} dx$$

$$du = \frac{1}{x} dx$$

$$v = -\frac{1}{2}x^{-2}$$

 $= -x \cot x + \ln|\sin x| + C$

$$\int x^{-3} \ln x \, dx = -\frac{1}{2} x^{-2} \ln x - \int -\frac{1}{2} x^{-2} \frac{1}{x} \, dx$$

$$= -\frac{1}{2} x^{-2} \ln x + \int \frac{1}{2} x^{-3} \, dx$$

$$= -\frac{1}{2} x^{-2} \ln x - \frac{1}{4} x^{-2} + C$$

$$= -\frac{\ln x}{2x^2} - \frac{1}{4x^2} + C$$

$$u = 2x^2$$
 $dv = \sec^2x \tan x dx$
 $du = 4x dx$ $v = \frac{1}{2}\tan^2x$
 $3x + \cot x dx$
 $3x + \cot x$

0795604	د. حالد جلال 0799948198 & الياد العهد 1563	طريق التفوق في الرياصيات :
	$u = \ln \sin x \qquad dv = \cos x dx$	
14	$du = \frac{\cos x}{\sin x} dx \qquad v = \sin x$	
	$\int \cos x \ln \sin x dx = \sin x \ln \sin x - \int \cos x$	cdx .
	$= \sin x \ln \sin x - \sin x +$	C
Miconia (VI	$u = \ln(1 + e^x) \qquad dv = e^x dx$	me american and a special cons
	$du = \frac{e^x}{1 + e^x} dx \qquad v = e^x$	
15	$\int e^x \ln(1+e^x) dx = e^x \ln(1+e^x) - \int \frac{e^{2x}}{1+e^x} dx$	$\frac{e^{x}}{e^{x}}dx$
	$= e^x \ln(1 + e^x) - \int \left(e^x - \frac{1}{2}\right)^{-1} dx$	
	$= e^x \ln(1 + e^x) - \int \left(e^x - \frac{1}{2}\right)^{-1} dx$	$+\frac{-e^{-x}}{e^{-x}+1}dx$
Parison —	- at la/4 at la	(1 + a=X) + C
	= 0 111(1 + 0) - 0 - 111	RITE ITE
o manuer servery	$= e^x \ln(1 + e^x) - e^x - \ln x$ $\int e^x \cos x dx = \frac{1}{2} e^x (\sin x + \cos x) + C$	جننا في المثال 3 أنّ:
16		HAVE BEEN BUSINESS TO COMPANY
16	$\int e^x \cos x dx = \frac{1}{2} e^x (\sin x + \cos x) + C$	جِننا في المثال 3 أنّ:
16	$\int e^x \cos x dx = \frac{1}{2} e^x (\sin x + \cos x) + C$ $\Rightarrow \int_0^{\frac{\pi}{2}} e^x \cos x dx = \frac{1}{2} e^x (\sin x + \cos x) \Big _0^{\frac{\pi}{2}}$	جِننا في المثال 3 أنّ:
16	$\int e^{x} \cos x dx = \frac{1}{2} e^{x} (\sin x + \cos x) + C$ $\Rightarrow \int_{0}^{\frac{\pi}{2}} e^{x} \cos x dx = \frac{1}{2} e^{x} (\sin x + \cos x) \Big _{0}^{\frac{\pi}{2}}$ $= \frac{1}{2} e^{\frac{\pi}{2}} - \frac{1}{2} e^{0} = \frac{1}{2} e^{\frac{\pi}{2}} - \frac{1}{2}$ $\int_{1}^{e} \ln x^{2} dx = \int_{1}^{e} 2 \ln x dx$	جِننا في المثال 3 أنّ:
tional Cer	$\int e^{x} \cos x dx = \frac{1}{2} e^{x} (\sin x + \cos x) + C$ $\Rightarrow \int_{0}^{\frac{\pi}{2}} e^{x} \cos x dx = \frac{1}{2} e^{x} (\sin x + \cos x) \Big _{0}^{\frac{\pi}{2}}$ $= \frac{1}{2} e^{\frac{\pi}{2}} - \frac{1}{2} e^{0} = \frac{1}{2} e^{\frac{\pi}{2}} - \frac{1}{2}$ $\int_{1}^{e} \ln x^{2} dx = \int_{1}^{e} 2 \ln x dx$	جِننا في المثال 3 أنّ:
16	$\int e^x \cos x dx = \frac{1}{2} e^x (\sin x + \cos x) + C$ $\Rightarrow \int_0^{\frac{\pi}{2}} e^x \cos x dx = \frac{1}{2} e^x (\sin x + \cos x) \Big _0^{\frac{\pi}{2}}$ $= \frac{1}{2} e^{\frac{\pi}{2}} - \frac{1}{2} e^0 = \frac{1}{2} e^{\frac{\pi}{2}} - \frac{1}{2}$ $\int_1^e \ln x^2 dx = \int_1^e 2 \ln x dx$ $u = 2 \ln x \qquad dv = dx$	جِننا في المثال 3 أنّ:
ional Cer	$\int e^{x} \cos x dx = \frac{1}{2} e^{x} (\sin x + \cos x) + C$ $\Rightarrow \int_{0}^{\frac{\pi}{2}} e^{x} \cos x dx = \frac{1}{2} e^{x} (\sin x + \cos x) \Big _{0}^{\frac{\pi}{2}}$ $= \frac{1}{2} e^{\frac{\pi}{2}} - \frac{1}{2} e^{0} = \frac{1}{2} e^{\frac{\pi}{2}} - \frac{1}{2}$ $\int_{1}^{e} \ln x^{2} dx = \int_{1}^{e} 2 \ln x dx$ $u = 2 \ln x \qquad dv = dx$ $du = \frac{2}{x} dx \qquad v = x$	جِننا في المثال 3 أنّ:
tional Cer	$\int e^{x} \cos x dx = \frac{1}{2} e^{x} (\sin x + \cos x) + C$ $\Rightarrow \int_{0}^{\frac{\pi}{2}} e^{x} \cos x dx = \frac{1}{2} e^{x} (\sin x + \cos x) \Big _{0}^{\frac{\pi}{2}}$ $= \frac{1}{2} e^{\frac{\pi}{2}} - \frac{1}{2} e^{0} = \frac{1}{2} e^{\frac{\pi}{2}} - \frac{1}{2}$ $\int_{1}^{e} \ln x^{2} dx = \int_{1}^{e} 2 \ln x dx$ $u = 2 \ln x \qquad dv = dx$ $du = \frac{2}{x} dx \qquad v = x$ $\int_{1}^{e} 2 \ln x dx = 2x \ln x _{1}^{e} - \int_{1}^{e} 2 dx$	جننا في المثال 3 أن: Center National Conter In Conter In Content

$$= \int_{1}^{2} (\ln x + x) dx = \int_{1}^{2} \ln x \, dx + \int_{1}^{2} x dx$$

 $u = \ln x$ (alional Can dv = dx National الأجزاء: $\int_1^2 \ln x \, dx$ نجد

$$du = \frac{1}{x} dx \qquad v = x$$

$$\int_{1}^{2} \ln x \, dx = x \ln x |_{1}^{2} - \int_{1}^{2} dx = x \ln x |_{1}^{2} - x |_{1}^{2} = 2 \ln 2 - \ln 1 - 2 + 1$$

$$\int_{1}^{2} x dx = \frac{1}{2} x^{2} \Big|_{1}^{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2}$$

$$\Rightarrow \int_{1}^{2} \ln(xe^{x}) dx = 2 \ln 2 - 1 + \frac{3}{2} = 2 \ln 2 + \frac{1}{2}$$

 $u = x dv = \sec^2 3x \, dx$

$$du = dx v = \frac{1}{3} \tan 3x$$

$$\int_{\frac{\pi}{12}}^{\frac{\pi}{9}} x \sec^2 3x \, dx = \frac{1}{3} x \tan 3x \Big|_{\frac{\pi}{12}}^{\frac{\pi}{9}} - \int_{\frac{\pi}{12}}^{\frac{\pi}{9}} \frac{1}{3} \tan 3x \, dx$$

$$= \frac{1}{3}x \tan 3x \Big|_{\frac{\pi}{32}}^{\frac{\pi}{9}} - \int_{\frac{\pi}{32}}^{\frac{\pi}{9}} \frac{1}{3} \frac{\sin 3x}{\cos 3x} dx$$

$$= \frac{1}{3}x \tan 3x \Big|_{\frac{\pi}{12}}^{\frac{\pi}{9}} + \frac{1}{9} \ln \cos 3x \Big|_{\frac{\pi}{12}}^{\frac{\pi}{9}}$$

$$= \frac{\pi}{27} \tan \frac{\pi}{3} - \frac{\pi}{36} \tan \frac{\pi}{4} + \frac{1}{9} \ln \cos \frac{\pi}{3} - \frac{1}{9} \ln \cos \frac{\pi}{4}$$

$$=\frac{\pi\sqrt{3}}{27}-\frac{\pi}{36}+\frac{1}{9}\ln\frac{1}{2}-\frac{1}{9}\ln\frac{1}{\sqrt{2}}$$

ا.اباد الحمد 0795604563

د.خالد جلال 0799948198

طريق التفوق في الرياضيات :

$$u = xe^x dv = (1+x)^{-2} dx$$

$$du = (xe^x + e^x) dx = e^x(x+1) dx$$
 $v = -(1+x)^{-1}$

$$\int_0^1 \frac{xe^x}{(1+x)^2} dx = -xe^x (1+x)^{-1} \Big|_0^1 + \int_0^1 \frac{e^x (x+1)}{(1+x)} dx$$

$$= -\frac{xe^x}{1+x}\Big|_0^1 + e^x\Big|_0^1$$

$$= -\frac{e}{2} + e - 1 = \frac{1}{2}e - 1$$

$$u = x dv = 3^x dx$$

$$du = dx$$
 $v = \frac{3^x}{\ln 3}$

$$\int_0^1 x 3^x \, dx = x \frac{3^x}{\ln 3} \Big|_0^1 - \int_0^1 \frac{3^x}{\ln 3} \, dx$$
$$= x \frac{3^x}{\ln 3} \Big|_0^1 - \frac{3^x}{(\ln 3)^2} \Big|_0^1$$

$$= x \frac{3^x}{\ln 3} \Big|_0^1 - \frac{3^x}{(\ln 3)^2} \Big|_0^1$$

$$= \frac{3}{\ln 3} - \frac{3}{(\ln 3)^2} + \frac{1}{(\ln 3)^2} = \frac{3 \ln 3 - 2}{(\ln 3)^2}$$

$$y = x^2 \Longrightarrow dx = \frac{dy}{2x}$$

$$\int x^3 e^{x^2} dx = \int x^3 e^y \frac{dy}{2x} = \int \frac{1}{2} x^2 e^y dy = \int \frac{1}{2} y e^y dy$$

$$u = \frac{1}{2}y$$
National Can $dv = e^y dy$

$$du = \frac{1}{2} dy \qquad v = e^y$$

$$\int \frac{1}{2} y e^y dy = \frac{1}{2} y e^y - \int \frac{1}{2} e^y dy$$

$$= \frac{1}{2}ye^{y} - \frac{1}{2}e^{y} + C$$

$$\int x^{3}e^{x^{2}}dx = \frac{1}{2}x^{2}e^{x^{2}} - \frac{1}{2}e^{x^{2}} + C$$

$$y = \ln x \Rightarrow \frac{dy}{dx} = \frac{1}{x} \Rightarrow dx = xdy \quad , \quad x = e^{y}$$
$$\int \cos(\ln x) \, dx = \int x \cos y \, dy = \int e^{y} \cos y \, dy$$

&

من المثال محلول الصفحات 55و 56 في كتاب الطالب نجد أنَّ:

$$\int e^y \cos y \, dy = \frac{1}{2} e^y (\sin y + \cos y) + C$$

$$\Rightarrow \int \cos(\ln x) \, dx = \frac{1}{2} e^{\ln x} (\sinh x + \cosh x) + C$$

$$= \frac{1}{2} x (\sin \ln x + \cos \ln x) + C$$

$$y = x^2 \Rightarrow dx = \frac{dy}{2x}$$

$$\int x^3 \sin x^2 dx = \int x^3 \sin y \frac{dy}{2x} = \int \frac{1}{2} x^2 \sin y dy = \int \frac{1}{2} y \sin y dy$$

$$u = \frac{1}{2}y \qquad dv = \sin y \, dy$$

27 can
$$du = \frac{1}{2} dy$$
 final can $v = -\cos y$ at local Center

$$\int \frac{1}{2} y \sin y \, dy = -\frac{1}{2} y \cos y + \int \frac{1}{2} \cos y \, dy$$

$$= -\frac{1}{2} y \cos y + \frac{1}{2} \sin y + = -\frac{1}{2} x^2 \cos x^2 + \frac{1}{2} \sin x^2 + C$$

$$y = \cos x \Rightarrow dx = \frac{dy}{-\sin x}$$

$$\int e^{\cos x} \sin 2x \, dx = \int e^{y} (2 \sin x \cos x) \frac{dy}{-\sin x} = \int -2y e^{y} dy$$

$$u = -2y dv = e^y dy$$

$$du = -2 dy \qquad v = e^{y}$$

$$\int -2ye^{y}dy = -2ye^{y} + \int 2e^{y}dy$$

$$= -2ye^{y} + 2e^{y} + C$$

$$\Rightarrow \int e^{\cos x} \sin 2x \, dx = -2 \cos x \, e^{\cos x} + 2 e^{\cos x} + C$$

$$y = \sqrt{x} \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2y} \Rightarrow dx = 2ydy$$

$$\int \sin \sqrt{x} \, dx = \int 2y \sin y \, dy$$

$$u=2y$$
 $dv=\sin y\,dy$

$$du = 2 dy$$
 $v = -\cos y$

$$\int 2y\sin y\,dy = -2y\cos y + \int 2\cos y\,dy$$

$$= -2y\cos y + 2\sin y + C$$

$$\Rightarrow \int \sin \sqrt{x} \, dx = -2\sqrt{x} \cos \sqrt{x} + 2\sin \sqrt{x} + C$$

$$y = x^2 \Rightarrow \frac{dy}{dx} = 2x \Rightarrow dx = \frac{dy}{2x}$$

$$\int \frac{x^3 e^{x^2}}{(x^2+1)^2} dx = \int \frac{x^3 e^y}{(y+1)^2} \frac{dy}{2x} = \int \frac{1}{2} x^2 \frac{e^y}{(y+1)^2} dy = \int \frac{\frac{1}{2} y e^y}{(y+1)^2} dy$$

$$u = \frac{1}{2} y e^y$$

$$dv = \frac{1}{(v+1)^2} dy$$

$$du = \frac{1}{2}(ye^{y} + e^{y}) dy = \frac{1}{2}e^{y}(y+1) dy \qquad v = \frac{-1}{y+1}$$

$$\int \frac{\frac{1}{2}ye^{y}}{(y+1)^{2}}dy = \frac{-ye^{y}}{2(y+1)} + \int \frac{1}{y+1} \times \frac{1}{2}e^{y}(y+1)dy$$

$$= \frac{-ye^{y}}{2(y+1)} + \frac{1}{2} \int e^{y} dy = \frac{-ye^{y}}{2(y+1)} + \frac{1}{2}e^{y} + C$$

$$=\frac{-x^2e^{x^2}}{2(x^2+1)}+\frac{1}{2}e^{x^2}+C=\frac{e^{x^2}}{2(x^2+1)}+C$$

الإحداثيان x للنقطتين A و B هما أصغر حلين موجبين للمعائلة:

$$f(x) = e^{-x} \sin 2x = 0$$

$$\Rightarrow \sin 2x = 0 \Rightarrow 2x = \pi/2\pi$$
,...

$$\Rightarrow x = \frac{\pi}{2}, \pi, \dots \Rightarrow A\left(\frac{\pi}{2}, 0\right), B(\pi, 0)$$

$$A = \int_0^{\frac{\pi}{2}} e^{-x} \sin 2x \ dx + \left(-\int_{\frac{\pi}{2}}^{\pi} e^{-x} \sin 2x \ dx\right)$$

التكامل غير المحدود) $\int e^{-x} \sin 2x \ dx$ (التكامل غير المحدود)

$$u = e^{-x} \qquad dv = \sin 2x \, dx$$

$$du = -e^{-x}dx \qquad v = -\frac{1}{2}\cos 2x$$

$$\int e^{-x} \sin 2x \ dx = -\frac{1}{2} e^{-x} \cos 2x - \int \frac{1}{2} e^{-x} \cos 2x \ dx$$

بالأجزاء مرة أخرى:

$$u = \frac{1}{2}e^{-x} \qquad dv = \cos 2x \, dx$$

$$du = -\frac{1}{2}e^{-x}dx \qquad v = \frac{1}{2}\sin 2x$$

$$\int e^{-x} \sin 2x \ dx = -\frac{1}{2} e^{-x} \cos 2x - \frac{1}{4} e^{-x} \sin 2x - \frac{1}{4} \int e^{-x} \sin 2x \ dx$$

$$\int e^{-x} \sin 2x \ dx + \frac{1}{4} \int e^{-x} \sin 2x \ dx = -\frac{1}{2} e^{-x} \cos 2x - \frac{1}{4} e^{-x} \sin 2x$$

$$\frac{5}{4} \int e^{-x} \sin 2x \ dx = -\frac{1}{2} e^{-x} \cos 2x - \frac{1}{4} e^{-x} \sin 2x + C$$

$$\int e^{-x} \sin 2x \ dx = -\frac{1}{5} e^{-x} (2 \cos 2x + \sin 2x) + C$$

$$\Rightarrow A = -\frac{1}{5}e^{-x}(2\cos 2x + \sin 2x)\Big|_{0}^{\frac{\pi}{2}} + \frac{1}{5}e^{-x}(2\cos 2x + \sin 2x)\Big|_{\frac{\pi}{2}}^{\pi}$$

$$=\frac{2}{5}e^{-\frac{\pi}{2}}+\frac{2}{5}+\frac{2}{5}e^{-\pi}+\frac{2}{5}e^{-\frac{\pi}{2}}$$

$$=\frac{2}{5}\left(1+e^{-\pi}+2e^{-\frac{\pi}{2}}\right)$$

$$s(t) = \int t e^{-\frac{t}{2}} dt$$

$$u = t$$

$$dv = e^{-\frac{t}{2}}dt$$

$$du = dt v = -2e^{-\frac{t}{2}}$$

$$s(t) = -2te^{-\frac{t}{2}} - \int -2e^{-\frac{t}{2}}dt = -2te^{-\frac{t}{2}} - 4e^{-\frac{t}{2}} + C$$

$$s(0) = 0 - 4 + C$$

$$0 = 0 - 4 + C \Longrightarrow C = 4$$

$$\Rightarrow s(t) = -2te^{-\frac{t}{2}} - 4e^{-\frac{t}{2}} + 4$$

$$f(x) = \int (x+2)\sin x \ dx$$

$$u = x + 2$$

$$u = x + 2 \qquad dv = \sin x \ dx$$

$$du = dx$$

$$v = -\cos x$$

$$f(x) = -(x+2)\cos x + \int \cos x \, dx$$
$$= -(x+2)\cos x + \sin x + C$$

$$f(0) = -2 + 0 + C$$

$$2 = -2 + 0 + C \implies C = 4$$

$$f(x) = -(x+2)\cos x + \sin x + 4$$

$$f(x) = \int 2xe^{-x} \, dx$$

$$u=2x$$

$$dv = e^{-x} dx$$

$$du = 2dx v = -e^{-x}$$

$$v=-e^{-x}$$

$$f(x) = -2xe^{-x} + \int 2e^{-x} dx$$
$$= -2xe^{-x} - 2e^{-x} + C$$

$$f(0) = 0 - 2 + C$$

$$3 = -2 + C \implies C = 5$$

$$f(x) = -2xe^{-x} - 2e^{-x} + 5$$

$$N(t) = \int (t+6)e^{-0.25t}dt$$

$$u=t+6$$

$$dv = e^{-0.25t}dt$$

$$du = dt$$

$$v = -4e^{-0.25t}$$

$$N(t) = -4(t+6)e^{-0.25t} + \int 4e^{-0.25t}dt$$

$$= -4(t+6)e^{-0.25t} - 16e^{-0.25t} + C$$

$$N(0) = -24 - 16 + C \implies C = 80$$

$$\Rightarrow N(t) = -4(t+6)e^{-0.25t} - 16e^{-0.25t} + 80$$

$$u = \ln 2x$$

$$dv = x^2 dx$$

$$du = \frac{1}{x}dx \qquad v = \frac{1}{3}x^3$$

$$v = \frac{1}{3}x^3$$

$$\int_{\frac{1}{2}}^{3} x^{2} \ln 2x \ dx = \frac{1}{3} x^{3} \ln 2x \Big|_{\frac{1}{2}}^{3} - \int_{\frac{1}{2}}^{3} \frac{1}{3} x^{2} \ dx$$

$$= \frac{1}{3}x^3 \ln 2x \Big|_{\frac{1}{2}}^3 - \frac{1}{9}x^3 \Big|_{\frac{1}{2}}^3 = 9 \ln 6 - \frac{215}{72}$$

$$u = x$$

$$u = x dv = \sin 5x \sin 3x dx = \frac{1}{2}(\cos 2x - \cos 8x)dx$$

$$du = dx$$

$$du = dx \qquad v = \frac{1}{4}\sin 2x - \frac{1}{16}\sin 8x$$

$$\int_0^{\frac{\pi}{4}} x \sin 5x \sin 3x \ dx$$

$$= x \left(\frac{1}{4} \sin 2x - \frac{1}{16} \sin 8x \right) \Big|_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \left(\frac{1}{4} \sin 2x - \frac{1}{16} \sin 8x \right) dx$$

$$= x \left(\frac{1}{4} \sin 2x - \frac{1}{16} \sin 8x \right) \Big|_{0}^{\frac{\pi}{4}} - \left(-\frac{1}{8} \cos 2x + \frac{1}{128} \cos 8x \right) \Big|_{0}^{\frac{\pi}{4}}$$

$$=\frac{\pi}{4}\left(\frac{1}{4}\right)+0-\frac{1}{128}-\frac{1}{8}+\frac{1}{128}=\frac{\pi-2}{16}$$

$$A_1 = -\int_{-\frac{1}{2}}^{0} x e^{2x} dx$$
 , $A_2 = \int_{0}^{\frac{1}{2}} x e^{2x} dx$

نجد التكامل غير المحدود xe2x dx بالأجزاء:

$$u = x \qquad ||u| = ||u|| dv = e^{2x} dx$$

$$u = x$$

$$dv = e^{2x} dx$$

$$du = dx$$

$$v = \frac{1}{2}e^{2x}$$

$$\int xe^{2x} \, dx = \frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x} \, dx$$

$$\Rightarrow A(R_1) = -\frac{1}{4}e^{2x}(2x-1)\Big|_{\frac{1}{2}}^0 = \frac{1}{4} - \frac{1}{2e} = \frac{e-2}{4e}$$

$$A(R_2) = \frac{1}{4}e^{2x}(2x-1)\Big|_0^{\frac{1}{2}} = 0 + \frac{1}{4} = \frac{1}{4}$$

42
$$\frac{A(R_1)}{A(R_2)} = \frac{\frac{e-2}{4e}}{\frac{1}{4}} = \frac{e-2}{e} \implies A(R_1) : A(R_{12}) = (e-2) : e$$

$$u = \ln x \qquad dv = x^n dx$$

$$du = \frac{1}{x}dx \qquad v = \frac{1}{n+1}x^{n+1}$$

$$\int x^{n} \ln x \, dx = \frac{x^{n+1} \ln x}{n+1} - \int \frac{1}{n+1} x^{n} dx$$

$$= \frac{x^{n+1} \ln x}{n+1} - \frac{1}{(n+1)^{2}} x^{n+1} + C$$

$$= \frac{x^{n+1}}{(n+1)^{2}} (-1 + (n+1) \ln x) + C$$

$$u = x^n$$
 $dv = e^{ax}dx$

$$du = nx^{n-1}dx \qquad v = \frac{1}{a}e^{ax}$$

$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$

الدرس الرابع

التكامل بالأجزاء (كتاب التمارين)

$$u = x dv = \cos 4x \, dx$$

$$du = dx v = \frac{1}{4} \sin 4x$$

$$\int x \cos 4x \, dx = \frac{1}{4} x \sin 4x - \int \frac{1}{4} \sin 4x \, dx = \frac{1}{4} x \sin 4x + \frac{1}{16} \cos 4x + C$$

$$u = x dv = (x+1)^{\frac{1}{2}} dx$$

$$du = dx v = \frac{2}{3} (x+1)^{\frac{3}{2}} - \int \frac{2}{3} (x+1)^{\frac{3}{2}} dx$$

$$= \frac{2}{3} x (x+1)^{\frac{3}{2}} - \frac{4}{15} (x+1)^{\frac{5}{2}} + C$$

$$u = x dv = e^{-x} dx$$

$$du = dx v = -e^{-x}$$

$$\int x e^{-x} dx = -x e^{-x} - \int -e^{-x} dx = -x e^{-x} - e^{-x} + C$$

$$u = \ln x dv = (x^2 + 1) dx$$

$$du = \frac{1}{x} dx v = \frac{1}{3} x^3 + x$$

$$\int (x^2 + 1) \ln x \, dx = (\frac{1}{3} x^3 + x) \ln x - \int \frac{1}{x} (\frac{1}{3} x^3 + x) \ln x - \frac{1}{9} x^3 - x + C$$

$$u = 3 \ln x$$

$$dv = dx$$

$$du = \frac{3}{x}dx$$

$$v = x$$

$$\int 3 \ln x \, dx = 3x \ln x - \int 3 \, dx = 3x \ln x - 3x + C$$

$$u = e^{2x}$$

$$dv = \sin x \, dx$$

$$du = 2e^{2x}dx$$

$$v = -\cos x$$

$$\int e^{2x} \sin x \, dx = -e^{2x} \cos x + \int 2e^{2x} \cos x \, dx$$

$$u = 2e^{2x}$$

$$dv = \cos x \, dx$$

$$du = 4e^{2x}dx \qquad v = \sin x$$

$$v = \sin x$$

$$\Rightarrow \int e^{2x} \sin x \, dx = -e^{2x} \cos x + 2e^{2x} \sin x - \int 4e^{2x} \sin x \, dx$$

$$\Rightarrow \int e^{2x} \sin x \, dx = -e^{2x} \cos x + 2e^{2x} \sin x - 4 \int e^{2x} \sin x \, dx$$

$$\Rightarrow 5 \int e^{2x} \sin x \, dx = -e^{2x} \cos x + 2e^{2x} \sin x + C$$

$$\Rightarrow \int e^{2x} \sin x \, dx = -\frac{1}{5} e^{2x} \cos x + \frac{2}{5} e^{2x} \sin x + C$$

$$\Rightarrow \int e^{2x} \sin x \, dx = \frac{1}{5} e^{2x} (2 \sin x - \cos x) + C$$

$$u = \ln x$$

$$dv = dx$$

$$du = \frac{1}{x} dx$$

$$v = x$$

$$\int_{1}^{e} \ln x \ dx = x \ln x|_{1}^{e} - \int_{1}^{e} dx = x \ln x|_{1}^{e} - x|_{1}^{e} = e - e + 1 = 1$$

$$u = \ln x$$

$$dv = x^{-2}dx$$

$$du = \frac{1}{x}dx \qquad v = \frac{-1}{x}$$

$$\int_{0}^{2} \ln x$$

$$\int_{a}^{2} \frac{\ln x}{x^{2}} dx = \frac{-\ln x}{x} \Big|_{a}^{2} + \int_{a}^{2} x^{-2} dx = \frac{-\ln x}{x} \Big|_{a}^{2} - \frac{1}{x} \Big|_{a}^{2} = \frac{1}{2} - \frac{1}{2} \ln 2$$

$$u = x dv = \cos\frac{1}{4}x dx$$

$$du = dx v = 4\sin\frac{1}{4}x$$

$$\int_0^{\pi} x \cos\frac{1}{4}x dx = 4x\sin\frac{1}{4}x\Big|_0^{\pi} - \int_1^2 4\sin\frac{1}{4}x dx$$

$$= 4x\sin\frac{1}{4}x\Big|_0^{\pi} + 16\cos\frac{1}{4}x\Big|_0^{\pi}$$

$$= \frac{4\pi}{\sqrt{2}} + \frac{16}{\sqrt{2}} - 16 = 2\sqrt{2}\pi + 8\sqrt{2} - 16$$

$$u = e^{3x}$$

$$dv = \cos 2x \, dx$$

$$du = 3e^{3x} dx$$

$$v = \frac{1}{2} \sin 2x$$

$$\int e^{3x} \cos 2x \, dx = \frac{1}{2} e^{3x} \sin 2x - \int \frac{3}{2} e^{3x} \sin 2x \, dx$$

$$u = \frac{3}{2} e^{3x}$$

$$dv = \sin 2x \, dx$$

$$du = \frac{9}{2}e^{3x}dx \qquad v = -\frac{1}{2}\cos 2x$$

$$\Rightarrow \int e^{3x}\cos 2x \, dx = \frac{1}{2}e^{3x}\sin 2x + \frac{3}{4}e^{3x}\cos 2x - \int \frac{9}{4}e^{3x}\cos 2x \, dx$$

$$\Rightarrow \int e^{3x}\cos 2x \, dx = \frac{1}{2}e^{3x}\sin 2x + \frac{3}{4}e^{3x}\cos 2x - \frac{9}{4}\int e^{3x}\cos 2x \, dx$$

$$\Rightarrow \frac{13}{4}\int e^{3x}\cos 2x \, dx = \frac{1}{2}e^{3x}\sin 2x + \frac{3}{4}e^{3x}\cos 2x + C$$

$$\Rightarrow \int e^{3x}\cos 2x \, dx = \frac{1}{2}e^{3x}\sin 2x + \frac{3}{4}e^{3x}\cos 2x + C$$

$$\Rightarrow \int e^{3x}\cos 2x \, dx = \frac{1}{13}(2e^{3x}\sin 2x + 3e^{3x}\cos 2x)\Big|_{0}^{\frac{\pi}{4}} = \frac{1}{13}\left(2e^{\frac{3\pi}{4}} - 3\right)$$

$$u = \ln(x+1)$$

$$dv = dx$$

$$du = \frac{1}{x+1} dx$$

$$v = x$$

$$\int_{1}^{e} \ln(x+1) dx = x \ln(x+1)|_{1}^{e} - \int_{1}^{e} \frac{x}{x+1} dx$$

$$= x \ln(x+1)|_{1}^{e} - \int_{1}^{e} \left(1 + \frac{-1}{x+1}\right) dx$$

$$= x \ln(x+1)|_1^e - (x - \ln(x+1))|_1^e$$

$$= e \ln(e+1) - \ln 2 - (e - \ln(e+1)) + (1 - \ln 2)$$

$$= (1+e)\ln(e+1) - 2\ln 2 - e + 1$$

$$\int x^2 e^x \, dx$$

12

سنستخدم هذا طريقة الجدول:

ويتكاملاته المنكررة
$$g(x)$$
 ويتكاملاته المنكررة $g(x)$

$$2x \longrightarrow e^x$$

$$e^x$$

$$\Rightarrow \int x^2 e^x dx = x^2 e^x - 2x e^x + 2e^x + C$$

$$\Rightarrow \int_0^1 x^2 e^x dx = e^x (x^2 - 2x + 2) \Big|_0^1 = e - 2$$

$$u = \ln x$$
 $dv = dx$

$$du = \frac{1}{x} dx \qquad v = x$$

$$\int_{2}^{4} \ln x \, dx = x \ln x |_{2}^{4} - \int_{2}^{4} dx = x \ln x |_{2}^{4} - x |_{2}^{4}$$
$$= 4 \ln 4 - 2 \ln 2 - 2 = 8 \ln 2 - 2 \ln 2 - 2 = 6 \ln 2 - 2$$

14
$$x \sin x = 0 \implies x = 0, x = \pi, x = 2\pi, ...$$

 $A(\pi,0), B(2\pi,0)$ ومنه:

$$Area = \int_0^{\pi} x \sin x \ dx + \left(-\int_{\pi}^{2\pi} x \sin x \ dx\right)$$

$$u = x$$
 $dv = \sin x \, dx$

$$du = dx$$
 $v = -\cos x$

$$\int x \sin x \ dx = -x \cos x + \int \cos x \ dx = -x \cos x + \sin x + C$$

$$Area = \int_0^\pi x \sin x \, dx + (-\int_{\pi}^{2\pi} x \sin x \, dx)$$
$$= (-x \cos x + \sin x)|_0^{\pi} + (x \cos x - \sin x)|_{\pi}^{2\pi}$$

$$=\pi+2\pi-(-\pi)=4\pi$$

16
$$f(x) = 0 \Rightarrow x^2 \ln x = 0 \Rightarrow x = 0, x = 1$$
$$\Rightarrow A(1,0)$$

$$Area = \int_{1}^{2} x^{2} \ln x \ dx$$

$$u = \ln x$$
 National C $dv = x^2 dx$ National Cente

$$du = \frac{1}{x}dx \qquad v = \frac{1}{3}x^3$$

Area =
$$\int_{1}^{2} x^{2} \ln x \ dx = \frac{1}{3} x^{3} \ln x \Big|_{1}^{2} - \int_{1}^{2} \frac{1}{3} x^{2} \ dx$$

$$= \frac{1}{3}x^3 \ln x \Big|_1^2 - \frac{1}{9}x^3 \Big|_1^2$$
$$= \frac{8}{3} \ln 2 - \frac{8}{9} + \frac{1}{9} = \frac{8}{3} \ln 2 - \frac{7}{9}$$

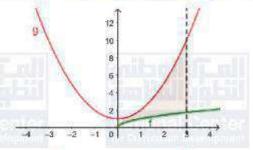
الدرس الفامس المساحات و الحجوم (كتاب الطالب)

e e	مسالة اليوم صفحة 74		
102	f(x) = h(x)		
	$-2\cos x + 4 = 2\cos x + 2 \implies \cos x = \frac{1}{2}$		
lonal Car	الإحداثي x للنقطة A هو أكبر حل سالب لهذه المعادلة و هو $\frac{\pi}{3} = x$:		
1	$\Rightarrow A\left(-\frac{\pi}{3}, f\left(-\frac{\pi}{3}\right)\right) = \left(-\frac{\pi}{3}, 3\right)$		
	$x = \frac{5\pi}{3}$: و مما $x = \frac{\pi}{3}$ ، و مما اصغر حلين موجبين للمعائلة، و هما: $x = \frac{\pi}{3}$ ، و $x = \frac{\pi}{3}$		
	$\Rightarrow B\left(\frac{\pi}{3}, f\left(\frac{\pi}{3}\right)\right) = \left(\frac{\pi}{3}, 3\right), \qquad C\left(\frac{5\pi}{3}, f\left(\frac{5\pi}{3}\right)\right) = \left(\frac{5\pi}{3}, 3\right)$		
lional Cent	$A(R_1) = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (h(x) - f(x)) dx$ National Center National Ce		
	$= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (2\cos x + 2 - (-2\cos x + 4)) dx = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (4\cos x - 2) dx$		
	$= 4 \sin x - 2x \Big _{\frac{\pi}{3}}^{\frac{\pi}{3}} = 2\sqrt{3} - \frac{2\pi}{3} - \left(-2\sqrt{3} + \frac{2\pi}{3}\right) = 4\sqrt{3} - \frac{4\pi}{3}$		
ronal Cen	er N5m Onal Center National Center National General Dividence of the Confedence of t		
2	$A(R_2) = \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} (f(x) - h(x)) dx$		
hallif i	$= \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} \left(-2\cos x + 4 - (2\cos x + 2)\right) dx = \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (2 - 4\cos x) dx$		
	$=2x-4\sin x _{\frac{\pi}{2}}^{\frac{5\pi}{3}}$		
riding begin	$= \frac{10\pi}{3} + 2\sqrt{3} - \left(\frac{2\pi}{3} - 2\sqrt{3}\right) = 4\sqrt{3} + \frac{8\pi}{3}$		
0705604	طبية التفوة في البياضيات . • خالد حلال 07000/1919 كا الباد الحمد 562		

أتحقق من فهمي صفحة 77

$$f(x) = g(x) \Rightarrow x^2 + 1 = \sqrt{x}$$

هذه المعادلة ليس لها حلول إذ أن المنحنيين لا يتقاطعان كما في الشكل أنناه.



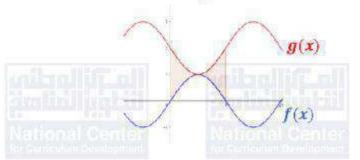
$$A = \int_0^3 \left(x^2 + 1 - \sqrt{x}\right) dx = \frac{1}{3}x^3 + x - \frac{2}{3}x^{\frac{3}{2}}\Big|_0^3$$

$$=9+3-2\sqrt{3}-0=12-2\sqrt{3}$$

$$f(x) = g(x) \Rightarrow 2 - \sin x = \sin x$$

$$\Rightarrow \sin x = 1 \Rightarrow x = \frac{\pi}{2}$$

$$\begin{array}{c|c}
g > f & g > f \\
0 & \pi & \pi
\end{array}$$

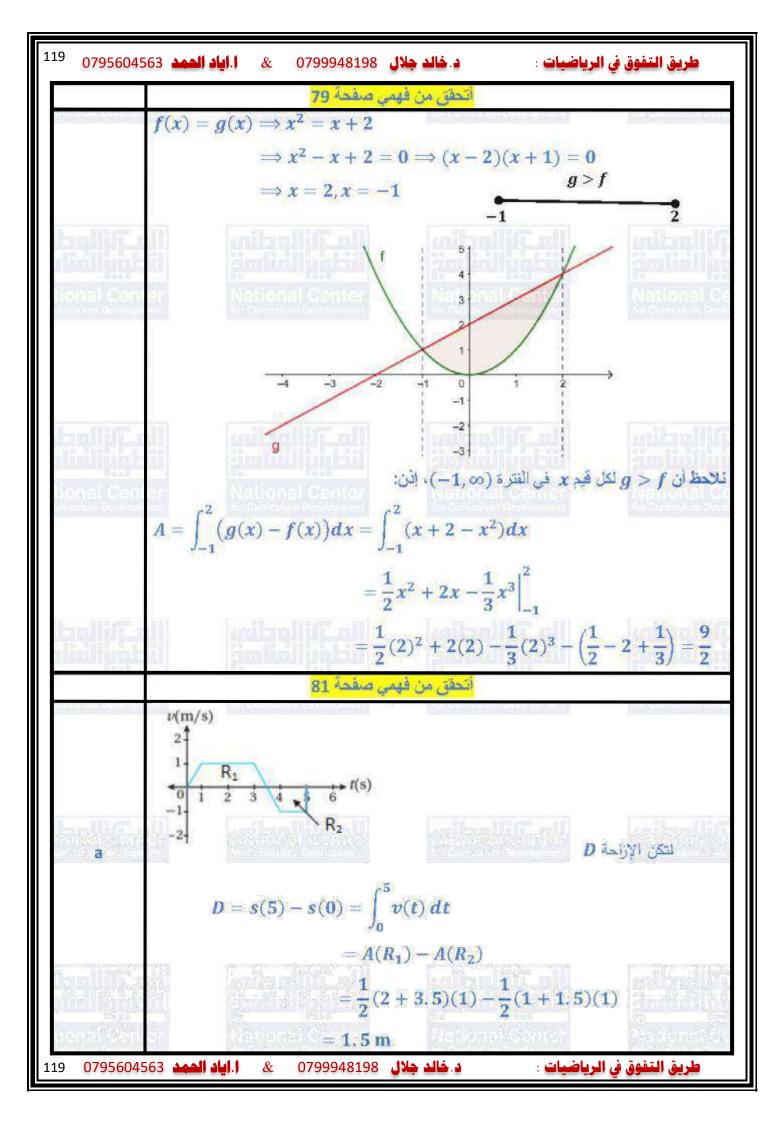


نجد أن $g \geq g$ لكل قيم x، إذن:

$$A = \int_0^{\pi} (g(x) - f(x)) dx = \int_0^{\pi} ((2 - \sin x) - \sin x) dx$$

$$=\int_0^\pi (2-2\sin x)dx$$

$$= 2x + 2\cos x|_0^{\pi} = 2\pi - 4$$



ا.اياد الحمد 0795604563 د.خالد جلال 0799948198 $\int_0^5 |v(t)| \, dt$:المسافة لتي قطعها الجسيم هي $\int_{0}^{5} |v(t)| dt = A(R_1) + A(R_2)$ $=\frac{1}{2}(5.5)+\frac{1}{2}(2.5)$ tion = 4 ms(5) - s(0) = 1.5ويتعويض s(0) = 3 نجد أنّ: $s(5) - 3 = 1.5 \implies s(5) = 4.5 - - - V = \int_{a}^{b} \pi (f(x))^{2} = \int_{a}^{4} \frac{\pi}{x^{2}} dx = -\frac{\pi}{x} \Big|_{1}^{4} = -\frac{\pi}{4} - \left(-\frac{\pi}{1}\right) = \frac{3\pi}{4}$ $f(x)=g(x)\Rightarrow \sqrt{x}=x^2\Rightarrow x-x^4=0\Rightarrow x(1-x^3)=0$ $\Rightarrow x = 0, \quad x = 1$ نالحظ أن منحنى f يقع فوق منطى g في الفترة (0, 1) $V = \int_0^1 \pi \left(\left(f(x) \right)^2 - \left(g(x) \right)^2 \right) dx$ $= \int_0^1 \pi(x-x^4) dx$ $=\pi\left(\frac{1}{2}x^2-\frac{1}{5}x^5\right)\Big|_0^1=\pi\left(\left(\frac{1}{2}-\frac{1}{5}\right)-0\right)=0.3\pi$ ا.اياد العمد 0795604563 د.خالد جلال 0799948198

	• • • • • • • • • • • • • • • • • • • •	
Hallier's	الله من الترب وأحل المسائل صفحة 85 مسالين المسائل المس	Calballis
inilitiit	$A = \int_{-1}^{1} \left(x^2 - (-2x^4) \right) dx = \int_{-1}^{1} (x^2 + 2x^4) dx$	Amini in
percentiant Lagrange	$= \left(\frac{1}{3}x^3 + \frac{2}{5}x^5\right)^{1}$	In Curriculus Devi
1	$= \left(\frac{1}{3} + \frac{2}{5}\right) - \left(-\frac{1}{3} - \frac{2}{5}\right) = \frac{22}{15}$	
2011111111111111222		TO SOMETIME SAME
	$A = \int_{-2}^{0} (x^3 - 3x - x) dx + \int_{0}^{2} (x - (x^3 - 3x)) dx$	
	$= \int_{-2}^{0} (x^3 - 4x) dx + \int_{0}^{2} (4x - x^3) dx$	
	$= \left(\frac{1}{4}x^4 - 2x^2\right)\Big _{0}^{0} + \left(2x^2 - \frac{1}{4}x^4\right)\Big _{0}^{2}$	الرالوطن <i>ي</i> الرالمناهي
tional Cen	= (0) - (4 - 8) + (8 - 4) - (0) = 8	National Ca
C 20	$A = \int_0^3 (e^{0.5x} - e^{-0.5x}) dx = (2e^{0.5x} + 2e^{-0.5x})\Big _0^3$	
ikanilingk	$= (2e^{1.5} + 2e^{-1.5}) - (2 + 2)$ $= 2e^{1.5} + 2e^{-1.5} - 4$	الألاطني إبالفاسة
avi sinan Secelari	$A = \int_0^{\frac{\pi}{4}} (\sec^2 x - \sin x) dx$	for Custoulan Devel
4	$= (\tan x + \cos x) _0^{\frac{\pi}{4}}$	
7	$f(x) = g(x) \Rightarrow \frac{1}{2}x^2 + 6 = 2x^2 \Rightarrow \frac{3}{2}x^2 = 6 \Rightarrow x^2 = 4$	
	$\Rightarrow x = 2, \qquad x = -2$	
5	$A = \int_{-2}^{2} (f(x) - g(x)) dx = \int_{-2}^{2} (\frac{1}{2}x^{2} + 6 - 2x^{2}) dx$	
tional Cen	$= \int_{-2}^{2} \left(6 - \frac{3}{2} x^{2} \right) dx = \left(6x - \frac{1}{2} x^{3} \right) \Big _{-2}^{2} \text{ final Center}$	National Ce
	=(12-4)-(-12+4)=16	

$$f(x) = g(x) \Rightarrow 3^x = 4^x \Rightarrow x = 0$$

$$A = \int_0^1 (f(x) - g(x)) dx = \int_0^1 (4^x - 3^x) dx = \left(\frac{4^x}{\ln 4} - \frac{3^x}{\ln 3} \right) \Big|_0^1$$

$$= \left(\frac{4}{\ln 4} - \frac{3}{\ln 3}\right) - \left(\frac{1}{\ln 4} - \frac{1}{\ln 3}\right)$$

$$= \frac{3}{\ln 4} - \frac{2}{\ln 2} \approx 0.344$$

$$f(x) = g(x) \Rightarrow e^x = \cos x$$

x=0 : x=0 غير السالب: x=0

 $e^x \geq \cos x$:نن، $e^x \geq 1$ بينما $\cos x \leq 1$ في الربع الأول: يكون

7
$$A = \int_0^{\frac{\pi}{2}} (e^x - \cos x) dx = (e^x - \sin x) \Big|_0^{\frac{\pi}{2}}$$

$$= \left(e^{\frac{\pi}{2}} - 1\right) - (1 - 0)$$

$$=e^{\frac{\pi}{2}}-2$$

$$g(x) = f(x) \Rightarrow x^4 = |x| \Rightarrow x^4 = x \text{ or } x^4 = -x$$

$$x^4 = x \Rightarrow x^4 - x = 0 \Rightarrow x(x^3 - 1) = 0 \Rightarrow x = 0, x = 1$$

$$x^4 = -x \Longrightarrow x^4 + x = 0 \Longrightarrow x(x^3 + 1) = 0 \Longrightarrow x = 0, x = -1$$

$$f(x)>g(x)$$
 ذن، يتقاطع المنحنيان عند $x=-1, x=0, x=1$ نن، يتقاطع المنحنيان عند

$$A = \int_{-1}^{1} (f(x) - g(x)) dx$$

نجزئ هذا التكامل بسبب تغيير قاعدة f(x) حول f(x) عول التكامل بسبب تغيير قاعدة الأتي:

$$A = \int_{-1}^{0} (-x - x^4) dx + \int_{0}^{1} (x - x^4) dx$$
$$= \left(-\frac{1}{2} x^2 - \frac{1}{5} x^5 \right) \Big|_{-1}^{0} + \left(\frac{1}{2} x^2 - \frac{1}{5} x^5 \right) \Big|_{0}^{1}$$

$$=(0)-\left(-\frac{1}{2}+\frac{1}{5}\right)+\left(\frac{1}{2}-\frac{1}{5}\right)-(0)=\frac{3}{5}$$

$$f(x) = g(x) \Rightarrow 3x^3 - x^2 - 10x = -x^2 + 2x$$

$$\Rightarrow 3x^3 - 12x = 0 \Rightarrow 3x(x^2 - 4) = 0$$

$$\Rightarrow x = 0, x = -2, x = 2$$

بحساب قيمتي الاقرانين عند عدد بين 2-، و0 مثل 1- نجد أنت:

$$f(-1) = -3 - 1 + 10 = 6, g(-1) = -1 - 2 = -3$$

$$(-2,0)$$
 في الفقرة $f(x)>g(x) \leftarrow$

بحساب قيمتي الاقترانين عند عدد بين 0 و2 مثل 1 نجد أن:

$$f(1) = 3 - 1 - 10 = -8, g(1) = -1 + 2 = 1$$

$$(0,2)$$
 في الفترة $f(x) < g(x) \leftarrow$

9

$$A = \int_{-2}^{0} (f(x) - g(x))dx + \int_{0}^{2} (g(x) - f(x))dx$$

$$= \int_{-2}^{0} \left(3x^3 - x^2 - 10x - \left(-x^2 + 2x\right)\right) dx + \int_{0}^{2} \left(-x^2 + 2x - \left(3x^3 - x^2 - 10x\right)\right) dx$$

$$= \int_{-2}^{0} (3x^3 - 12x)dx + \int_{0}^{2} (12x - 3x^3)dx$$

$$= \left(\frac{3}{4}x^4 - 6x^2\right)\Big|_{-2}^{0} + \left(6x^2 - \frac{3}{4}x^4\right)\Big|_{0}^{2} = 24$$

$$f(x) = g(x) \Rightarrow e^x = x^2$$

$$[0,\infty)$$
 يمكن استعمال الآلة الحاسبة لمعرفة أن $g(x)>g(x)$ في الفترة

$$A = \int_0^1 (e^x - x^2) dx = \left(e^x - \frac{1}{3} x^3 \right) \Big|_0^1$$

$$= \left(e - \frac{1}{3}\right) - (1 - 0) = e - \frac{4}{3}$$

$$f(x) = h(x) \Rightarrow \frac{1}{2}x^2 = 4\sqrt{x} \Rightarrow \frac{1}{4}x^4 = 16x \Rightarrow x^4 - 64x = 0$$

$$\Rightarrow x(x^3 - 64) = 0 \Rightarrow x = 0, x = 4$$

$$(0,4)$$
 في الفترة $h(x) > f(x)$

11

$$A = \int_0^4 (h(x) - f(x)) dx = \int_0^4 (4\sqrt{x} - \frac{1}{2}x^2) dx$$

$$= \left(\frac{8}{3}x^{\frac{3}{2}} - \frac{1}{6}x^{3}\right)\Big|_{0}^{4} = \left(\frac{64}{3} - \frac{32}{3}\right) - (0) = \frac{32}{3}$$

$$\int_{-a}^{a} (a^{2} - x^{2}) dx = \left(a^{2}x - \frac{1}{3}x^{3}\right)\Big|_{-a}^{a}$$

$$= \left(a^{3} - \frac{1}{3}a^{3}\right) - \left(-a^{3} + \frac{1}{3}a^{3}\right) = 2a^{3} - \frac{2}{3}a^{3} = \frac{4}{3}a^{3}$$

ABCD إذن، المماحة بين المنحنى والقطعة الممتقيمة AB تمناوي $\frac{2}{3}$ مساحة الممتطيل

$$A\left(\frac{1}{2}, f\left(\frac{1}{2}\right)\right) = \left(\frac{1}{2}, \frac{17}{2}\right)$$
$$B(2, f(2)) = \left(2, \frac{5}{2}\right)$$

$$y-\frac{5}{2}=-4(x-2)$$

$$y - \frac{5}{2} = -4(x-2)$$
 : AB معائلة المستقيم $\Leftarrow \frac{\frac{17}{2} - \frac{5}{2}}{\frac{1}{2}} = -4$

$$\frac{\frac{17}{2} \cdot \frac{5}{2}}{\frac{1}{2} - 2} = -4$$

$$\Rightarrow y = \frac{21}{2} - 4x$$

$$\int_{\frac{1}{2}}^{2} \left(\frac{21}{2} - 4x - (2x^{-2} + x) \right) dx = \int_{\frac{1}{2}}^{2} \left(\frac{21}{2} - 5x - 2x^{-2} \right) dx$$
$$= \left(\frac{21}{2} x - \frac{5}{2} x^2 + \frac{2}{x} \right) \Big|_{1}^{2} = 21 - 10 + 1 - \left(\frac{21}{4} - \frac{5}{8} + 4 \right) = \frac{27}{8}$$

$$D = s(8) - s(0) = \int_0^8 v(t) dt = \int_0^1 v(t) dt + \int_1^4 v(t) dt + \int_4^8 v(t) dt$$

يساوي مساحة المثلث الأيسر في الرسم البياتي وهي: $\int_0^1 v(t) \, dt$

$$\frac{1}{2}(1)(2)=1$$

14

يساوي معكوس مساحة شبه المنحرف في الرسم البياتي فهو يساوي:
$$\int_{1}^{4} v(t) \ dt$$

$$-\frac{1}{2}(1+3)(2)=-4$$

يساوي مساحة المثثث الأيمن في الرسم البياني وهي: $\int_4^8 v(t) \, dt$

$$s(8) - s(0) = 1 + (-4) + 8 = 5$$
 m : اذن، ازاحة الجميم هي $\frac{1}{2}(4)(4) = 8$

ا.اباد الحمد 0795604563 د.خالد جلال 0799948198 طريق التفوق في الرياضيات : $\int_0^8 |v(t)| dt$: المسافة التي قطعها الجسيم هي $\int_{0}^{8} |v(t)| dt = \int_{0}^{1} |v(t)| dt + \int_{0}^{4} |v(t)| dt + \int_{0}^{8} |v(t)| dt$ 15 = 1 + 4 + 8 = 13 ms(8) - s(0) = 5وبتعویضs(0) = 5 نجد أن: 16 $s(8) - 5 = 5 \Rightarrow s(8) = 10 \text{ m}$ $f(x) = g(x) \Rightarrow x^2 - 10x + 25 = 5 + 4x - x^2$ $\Rightarrow 2x^2 - 14x + 20 = 0 \Rightarrow x^2 - 7x + 10 = 0$ 17 \Rightarrow $(x-5)(x-2)=0 \Rightarrow x=5, x=2$ $\Rightarrow A(2,9), B(5,0)$ $V = \int \pi((5+4x-x^2)^2 - (x^2-10x+25)^2) dx$ $V = \int_{0}^{3} \pi (12x^{3} - 144x^{2} + 540x - 600) dx$ $=12\pi\int_{2}^{5}(x^{3}-12x^{2}+45x-50)dx$ 18 $=12\pi\left(\frac{1}{4}x^4-4x^3+\frac{45}{2}x^2-50x\right)\Big|^5$ $=12\pi\left(\left(\frac{1}{4}(5)^4-4(5)^3+\frac{45}{2}(5)^2-50(5)\right)\right)$ $-\left(\frac{1}{4}(2)^4 - 4(2)^3 + \frac{45}{2}(2)^2 - 50(2)\right) = 81\pi$ $V = \int_{0}^{\pi} \pi (f(x))^{2} dx = \pi \int_{0}^{\pi} \sin x \, dx = -\pi \cos x |_{0}^{\pi}$ 19 $= -\pi(\cos\pi - \cos 0) = 2\pi$

$$\sqrt{x} > x^3$$
 يكون $x \in (0,1)$ كال

 $V = \int_0^1 \pi \left(f^2(x) - g^2(x) \right) dx = \pi \int_0^1 (x - x^6) dx$

$$= \pi \left(\frac{1}{2} x^2 - \frac{1}{7} x^7 \right) \Big|_0^1 = \pi \left(\frac{1}{2} - \frac{1}{7} - 0 \right) = \frac{5\pi}{14}$$

$$1 + \sec x = 3 \Rightarrow \sec x = 2 \Rightarrow \cos x = \frac{1}{2} \Rightarrow x = -\frac{\pi}{3}, x = \frac{\pi}{3}$$

نائحظ أن المنحنيين يقعان فوق المحور x وأن $f(x) = 1 + \sec x < 3$ في الفترة

$$\left(-\frac{\pi}{3},\frac{\pi}{3}\right)$$

$$\int \sec x \ dx = \int \sec x \times \frac{\sec x + \tan x}{\sec x + \tan x} \ dx$$

$$= \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} dx = \ln|\sec x + \tan x| + C$$

$$V = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \pi (9 - (1 + \sec x)^2) dx = \pi \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (9 - (1 + 2\sec x + \sec^2 x)) dx$$

$$= \pi \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (8 - 2 \sec x - \sec^2 x) dx$$

$$= \pi (8x - 2 \ln|\sec x + \tan x| - \tan x)|_{\frac{\pi}{3}}^{\frac{\pi}{3}}$$

$$=\pi\left(\left(\frac{8\pi}{3}-2\ln(2+\sqrt{3})-\sqrt{3}\right)-\left(\frac{-8\pi}{3}-2\ln(2-\sqrt{3})+\sqrt{3}\right)\right)$$

$$=\pi\left(\frac{16\pi}{3}+2\ln\left(\frac{2-\sqrt{3}}{2+\sqrt{3}}\right)-2\sqrt{3}\right)$$

$$x^2 = x^{\frac{1}{2}} \Rightarrow x^4 = x \Rightarrow x^4 - x = 0 \Rightarrow x(x^3 - 1) = 0 \Rightarrow x = 0, x = 1$$

$$A = \int_0^1 \left(x^{\frac{1}{2}} - x^2 \right) dx = \left(\frac{2}{3} x^{\frac{3}{2}} - \frac{1}{3} x^3 \right) \Big|_0^1 = \frac{2}{3} - \frac{1}{3} - 0 = \frac{1}{3}$$

$$x^{3} = x^{\frac{1}{3}} \Rightarrow x^{9} = x \Rightarrow x^{9} - x = 0 \Rightarrow x(x^{8} - 1) = 0$$

$$\Rightarrow x(x^{4} - 1)(x^{4} + 1) = 0 \Rightarrow x(x^{2} - 1)(x^{2} + 1)(x^{4} + 1) = 0$$

$$\Rightarrow x = 0, x = -1, x = 1$$

$$(\frac{1}{8})^{\frac{1}{3}} = \frac{1}{2}, (\frac{1}{8})^{3} = \frac{1}{512} \Rightarrow x^{\frac{1}{3}} > x^{3}, \quad 0 < x < 1$$

$$(\frac{-1}{8})^{\frac{1}{3}} = \frac{-1}{2}, (\frac{-1}{8})^{3} = \frac{-1}{512} \Rightarrow x^{3} > x^{\frac{1}{3}}, \quad -1 < x < 0$$

$$A = \int_{-1}^{0} \left(x^{3} - x^{\frac{1}{3}}\right) dx + \int_{0}^{1} \left(x^{\frac{1}{3}} - x^{3}\right) dx$$

$$= \left(\frac{1}{4}x^{4} - \frac{3}{4}x^{\frac{4}{3}}\right)\Big|_{-1}^{0} + \left(\frac{3}{4}x^{\frac{4}{3}} - \frac{1}{4}x^{4}\right)\Big|_{0}^{1}$$

$$= 0 - \left(\frac{1}{4} - \frac{3}{4}\right) + \frac{3}{4} - \frac{1}{4} - 0 = 1$$

يتقاطع المنحنيان عند
$$x=0, x=1$$
 (كما في السؤال22)

$$A = \int_0^1 \left(x^{\frac{1}{n}} - x^n \right) dx = \left(\frac{x^{\frac{1}{n}+1}}{\frac{1}{n}+1} - \frac{x^{n+1}}{n+1} \right) \Big|_0^1 = \frac{1}{\frac{1}{n}+1} - \frac{1}{n+1} - 0$$
$$= \frac{n}{n+1} - \frac{1}{n+1} = \frac{n-1}{n+1}$$

ثانيًا: إذًا كان n فرديًا يتقاطع المنحنيان عند
$$x=0, x=1, x=-1$$
 (كما في الموال 23)

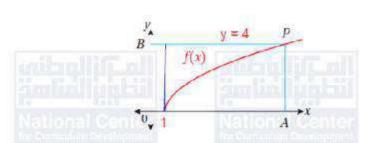
$$A = \int_{-1}^{0} \left(x^{n} - x^{\frac{1}{n}} \right) dx + \int_{0}^{1} \left(x^{\frac{1}{n}} - x^{n} \right) dx$$

$$= \left(\frac{x^{n+1}}{n+1} - \frac{x^{\frac{1}{n}+1}}{\frac{1}{n}+1}\right) \bigg|_{-1}^{0} + \left(\frac{x^{\frac{1}{n}+1}}{\frac{1}{n}+1} - \frac{x^{n+1}}{n+1}\right) \bigg|_{0}^{1}$$

$$=0-\left(\frac{1}{n+1}-\frac{1}{\frac{1}{n}+1}\right)+\frac{1}{\frac{1}{n}+1}-\frac{1}{n+1}-0=\frac{-1+n}{n+1}+\frac{n-1}{n+1}$$

$$2(n-1)$$

إن لم تستطع قول الحق فلا تصفق للباطل



نقسم المنطقة المطوب حساب مسلحتها إلى قسمين برسم المستقيم x=1، ونجد المساحة كم

$$A = \int_0^1 4 \, dx + \int_1^9 \left(4 - \sqrt{2x - 2}\right) \, dx$$

$$= (4x)\Big|_0^1 + (4x - \frac{1}{3}(2x - 2)^{\frac{3}{2}})\Big|_1^9$$

$$=4-0+36-\frac{1}{3}(16)^{\frac{3}{2}}-(4-0)=\frac{44}{3}$$

26
$$A = \int_{1}^{9} \sqrt{2x - 2} \, dx = \frac{1}{3} (2x - 2)^{\frac{3}{2}} \Big|_{1}^{9} = \frac{1}{3} \left((16)^{\frac{3}{2}} - 0 \right) = \frac{64}{3}$$

$$2\sqrt{x-2}=0 \Longrightarrow x=2$$

نقسم المنطقة إلى قسمين برسم المستقيم x=2، ونجد الحجم كما يأتي:

$$V = \pi \int_0^2 5^2 dx + \pi \int_0^6 \left(5^2 - \left(2\sqrt{x - 2} \right)^2 \right) dx$$

$$= \pi \int_0^2 25 \ dx + \pi \int_2^6 (25 - (4x - 8)) \ dx$$

$$= 50\pi + \pi \int_{2}^{6} (33 - 4x) dx = 50\pi + \pi (33x - 2x^{2}) \Big|_{2}^{6}$$
$$= 50\pi + \pi (33(6) - 72 - 66 + 8) \Big|_{2}^{6}$$

$$=118\pi$$

$$y = x^3 - 5x^2 + 3x + 10$$

$$f'(x) = 3x^2 - 10x + 3 = 0 \Rightarrow (3x - 1)(x - 3) = 0 \Rightarrow x = \frac{1}{3}, x = 3$$
 نقطة القيمة العظمى هي: $\left(\frac{1}{3}, f\left(\frac{1}{3}\right)\right) = \left(\frac{1}{3}, \frac{283}{27}\right)$

التقطة A تقع على محور v إذن إحداثياها هما:

$$A(0,f(0))=(0,10)$$

$$\frac{dy}{dx}\Big|_{x=0}=0-0+3=3$$
 ميل المنحنى عند A مو:

f'(0)=3 معادلة مماس المنحنى f(x)عند النقطة A هي (حيث 3):

$$y-10 = 3(x-0) \Rightarrow y = 3x+10$$

وهذه المعاللة هي معادلة المستقيم AD نفسها.

إذن، \overrightarrow{AD} مملس لمنظى f(x) عند النقطة A

$$A = \int_0^3 \left(3x + 10 - (x^3 - 5x^2 + 3x + 10)\right) dx$$

$$= \int_0^3 (5x^2 - x^3) \ dx = \left(\frac{5}{3}x^3 - \frac{1}{4}x^4\right)\Big|_0^3 = 45 - \frac{81}{4} - 0 = \frac{99}{4}$$

$$f(x) = g(x) \Longrightarrow \cos x = \sin x \Longrightarrow \tan x = 1 \Longrightarrow x = \frac{\pi}{4} \text{ or } x = \frac{5\pi}{4}$$

32

30

نالحظ من الرسم المعطى أن x تقع في الفترة $(0, \frac{\pi}{2})$.

$$\left(rac{\pi}{4},f\left(rac{\pi}{4}
ight)
ight)=\left(rac{\pi}{4},rac{1}{\sqrt{2}}
ight)$$
 إنن، إحداثيا النقطة A هما:

$$A(R_1) = \int_0^{\frac{\pi}{4}} (\cos x - \sin x) \, dx$$

$$= (\sin x + \cos x)\Big|_0^{\frac{\pi}{4}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - (0+1) = \sqrt{2} - 1$$

$$A(R_2) = \int_0^{\frac{\pi}{4}} \sin x \ dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x \ dx$$

$$=-\cos x|_0^{\frac{\pi}{4}}+\sin x|_{\frac{\pi}{4}}^{\frac{\pi}{2}}=-\frac{1}{\sqrt{2}}+1+1-\frac{1}{\sqrt{2}}=2-\sqrt{2}$$

$$A(R_3) = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin x - \cos x) \, dx + \int_{\frac{\pi}{2}}^{\pi} \sin x \, dx$$

$$= (-\cos x - \sin x)|_{\frac{\pi}{4}}^{\frac{\pi}{2}} + (-\cos x)|_{\frac{\pi}{2}}^{\frac{\pi}{2}} = \sqrt{2}$$

33
$$\frac{A(R_1)}{A(R_2)} = \frac{\sqrt{2} - 1}{2 - \sqrt{2}} = \frac{\sqrt{2} - 1}{\sqrt{2}(\sqrt{2} - 1)} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$A(R_1)$$
: $A(R_2) = \sqrt{2}$: 2 انن،

$$y=x^r, y'=rx^{r-1}$$

ميل المماس عند (1, 1) هو:

معاللة المماس هي:

$$y-1=r(x-1) \Rightarrow y=rx+1-r$$

لإيجاد المقطع x لهذا المماس نضع y = 0 في معادلته:

$$0 = rx + 1 - r \Longrightarrow x = \frac{r-1}{r}$$
 National Center

 $(\frac{r-1}{r}, 0)$ انتقطع هذا المماس المحور x في النقطة المماس المحور $(\frac{r-1}{r}, 0)$

مساحة المنطقة R تساوي المساحة بين المنحنى والمحور x والمستقيمين x=0, x=1 مطروحًا

منها مساحة المثلث الذي رؤوسه A(R) (1, 0), (1, 1), $(\frac{r-1}{r}, 0)$ هي:

$$A(R) = \int_0^1 x^r dx - \frac{1}{2} (1 - \frac{r-1}{r})(1)$$

$$= \frac{x^r}{r+1} \Big|_0^1 - \frac{1}{2r} = \frac{1}{r+1} - \frac{1}{2r} = \frac{2r-r-1}{2r(r+1)} = \frac{r-1}{2r(r+1)}$$

$$A(r) = \frac{r-1}{2r^2 + 2r}, r \ge 1$$

$$A'(r) = \frac{2r^2 + 2r - (r-1)(4r+2)}{(2r^2 + 2r)^2} = \frac{-2(r^2 - 2r - 1)}{(2r^2 + 2r)^2} = 0$$

$$\Rightarrow r^2 - 2r - 1 = 0 \Rightarrow r = \frac{2 \pm \sqrt{8}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2}$$

 $1+\sqrt{2}$ ولأن $r\geq r$ تكون القيمة الحرجة

$$A'(r)$$
اندارة $1+\sqrt{2}$

 $r=1+\sqrt{2}$ التي تجعل المسلحة أكبر ما يمكن هي: $r=1+\sqrt{2}$

Value of the energy of $\frac{9}{4}(\frac{7}{2})^2 - \frac{7}{2}(\frac{7}{2}) - \frac{1}{3}(\frac{7}{2})^3 - (\frac{9}{4} - \frac{7}{2} - \frac{1}{3})$ $=\frac{125}{4\Omega}\approx 2.604$

 $\int_{-1}^{1} \left(k(1-x^2) - 2k(x^2-1) \right) dx = 8$ $\Rightarrow \int_{0}^{1} \left(k(1-x^{2}) + 2k(1-x^{2}) \right) dx = 8$ $\Rightarrow 3k \int_{-1}^{1} (1-x^2) dx = 8$ $3k\left(x-\frac{1}{3}x^3\right)\Big|_{x=0}^{1}=8$

 $3k\left(\left(1-\frac{1}{3}\right)-\left(-1+\frac{1}{3}\right)\right)=8$ $3k\left(2-\frac{2}{3}\right)=8 \implies 3k\left(\frac{4}{3}\right)=8 \implies k=2$

الدرس الخامس

المساحات و الحجوم (كتاب التمارين)

	y=2 ملاحظة هامة: يرجى تعديل المعادلة $y=1$ في الرسم إلى $y=1$
1	$A = \int_{0}^{\pi} \left(2 - (1 + \cos 2x) \right) dx = \left(x - \frac{1}{2} \sin 2x \right) \Big _{0}^{\pi} = (\pi - 0) - (0 - 0) = \pi$
	$A = \int_0^1 (2 - (1 + \cos 2x)) dx = \left(x - \frac{1}{2} \sin 2x\right)\Big _0^1 = (\pi - 0) - (0 - 0) = \pi$
cional	$1 + 10x - 2x^{2} = 1 + 5x - x^{2} \Rightarrow x^{2} - 5x = 0$ $\Rightarrow x(x - 5) = 0 \Rightarrow x = 0, x = 5$
2	$\Rightarrow A = \int_0^5 \left(1 + 10x - 2x^2 - (1 + 5x - x^2)\right) dx$
lean II	$= \int_0^5 (5x - x^2) \ dx = \left(\frac{5}{2}x^2 - \frac{1}{3}x^3\right)\Big _0^5 = \frac{125}{2} - \frac{125}{3} = \frac{125}{6}$
ESI	$A = \int_0^2 \left(3x - x^2 - (x)\right) dx = \int_0^2 (2x - x^2) dx$
3	Centa National Center National
	$= \left(x^2 - \frac{1}{3}x^3\right)\Big _0^2 = 4 - \frac{8}{3} = \frac{4}{3}$
	$A = \int_{-1}^{2} \left((x^2 + 1) - (2x - 2) \right) dx = \int_{-1}^{2} (x^2 - 2x + 3) dx$
	$= \left(\frac{1}{3}x^3 - x^2 + 3x\right)\Big _{-1}^2 = \left(\frac{8}{3} - 4 + 6\right) - \left(-\frac{1}{3} - 1 - 3\right) = 9$
	$x^2 = 2 - x \Rightarrow x^2 + x - 2 = 0 \Rightarrow (x + 2)(x - 1) = 0 \Rightarrow x = -2, x = 1$
5	$A = \int_{-2}^{1} \left((2-x) - (x^2) \right) dx = \int_{-2}^{1} (2-x-x^2) dx$
	$= \left(2x - \frac{1}{2}x^2 - \frac{1}{3}x^3\right)\Big _{-2}^{1} = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-4 - 2 + \frac{8}{3}\right) = \frac{9}{2}$
المنار	$\frac{1}{x^2} = \frac{1}{x} \Rightarrow x^2 = x \Rightarrow x^2 - x = 0 \Rightarrow x(x-1) = 0 \Rightarrow x = 0, x = 1$
6	x=1 لكن $x eq 0$ لكن الاقترانين غير معرفين عند $x=0$ عند $x=0$ ، إذن يتقاطع المنحنيان في نقطة واحدة عند $x=1$
	$A = \int_{1}^{2} \left(\frac{1}{x} - \frac{1}{x^{2}} \right) dx = \left(\ln x + \frac{1}{x} \right) \Big _{1}^{2} = \left(\ln 2 + \frac{1}{2} \right) - (1) = \ln 2 - \frac{1}{2}$

$$1 - \cos x = \cos x \Rightarrow 2\cos x = 1 \Rightarrow \cos x = \frac{1}{2} \Rightarrow x = \frac{\pi}{3}$$

$$\cos x > 1 - \cos x, \quad 0 < x < \frac{\pi}{3}$$

$$\cos x < 1 - \cos x, \quad \frac{\pi}{2} < x < \pi$$

$$A = \int_0^{\frac{\pi}{3}} (\cos x - (1 - \cos x)) \, dx + \int_{\frac{\pi}{3}}^{\pi} (1 - \cos x - (\cos x)) \, dx$$

$$= \int_0^{\frac{\pi}{3}} (2\cos x - 1) \, dx + \int_{\frac{\pi}{3}}^{\pi} (1 - 2\cos x) \, dx$$

$$= (2\sin x - x)|_{0}^{\frac{\pi}{3}} + (x - 2\sin x)|_{\frac{\pi}{3}}^{\frac{\pi}{3}} = \sqrt{3} - \frac{\pi}{3} + \pi - \frac{\pi}{3} + \sqrt{3} = 2\sqrt{3} + \frac{\pi}{3}$$

$$3\sqrt{x} - \sqrt{x^3} + 4 = 4 - \frac{1}{2}x \Rightarrow 3\sqrt{x} - \sqrt{x^3} + \frac{1}{2}x = 0$$

$$\Rightarrow \sqrt{x}\left(3-x+\frac{1}{2}\sqrt{x}\right)=0 \Rightarrow \sqrt{x}=0 , x-\frac{1}{2}\sqrt{x}-3=0$$

$$\Rightarrow x = 0$$
, $2x - \sqrt{x} - 6 = 0$

8
$$\sqrt{x} = u \Rightarrow x = u^2$$
, $\sqrt{x} > 0 \Rightarrow u > 0$

$$2x - \sqrt{x} - 6 = 0 \Longrightarrow 2u^2 - u - 6 = 0$$

$$(2u+3)(u-2)=0 \Rightarrow u=-rac{3}{2}, u=2 \Rightarrow x=4$$
 (الحل السالب مر فوض)

$$\Rightarrow x = 0$$
, $x = 4$

$$\Rightarrow A(4,2)$$

$$A = \int_0^4 \left(\left(3\sqrt{x} - \sqrt{x^3} + 4 \right) - \left(4 - \frac{1}{2}x \right) \right) dx$$

$$9 = \int_0^4 \left(3\sqrt{x} - \sqrt{x^3} + \frac{1}{2}x\right) dx = \left(2x^{\frac{3}{2}} - \frac{2}{5}x^{\frac{5}{2}} + \frac{1}{4}x^2\right)\Big|_0^4$$

$$=16-\frac{64}{5}+4=\frac{36}{5}=7.2$$

$$s(7) - s(0) = \int_0^7 v(t) dt = -A_1 + A_2 - A_3$$

$$= -\frac{1}{2}(2)(1) + \frac{1}{2}(2)(4+1) - \frac{1}{2}(2)(1) = -1 + 5 - 1 = 3 \text{ m}$$

د.خالد جلال 0799948198

11
$$d = \int_0^7 |v(t)| dt = A_1 + A_2 + A_3 = 1 + 5 + 1 = 7 \text{ m}$$

12
$$s(7) - s(0) = 3 \text{ m} \implies s(7) - 2 = 3 + 2 = 5 \text{ m}$$

$$\frac{1}{2}x + 3 = \frac{1}{2}x^2 \implies x^2 - x - 6 = 0 \implies (x - 3)(x + 2) = 0 \implies x = 3, x = -2$$

13
$$V = \pi \int_0^3 \left(\left(g(x) \right)^2 - \left(f(x) \right)^2 \right) dx = \pi \int_0^3 \left(\left(\frac{1}{2} x + 3 \right)^2 - \left(\frac{1}{2} x^2 \right)^2 \right) dx$$
$$= \pi \left(\frac{2}{3} \left(\frac{1}{2} x + 3 \right)^3 - \frac{1}{20} x^5 \right) \Big|_0^3 = \frac{153\pi}{5} = 30.6\pi$$

$$V = \pi \int_{e}^{e^{3}} (f(x))^{2} dx = \pi \int_{e}^{e^{3}} \ln x \ dx$$

$$u = \ln x \qquad dv = dx$$

$$\frac{14}{du} = \frac{1}{x} dx \qquad v = x$$

$$V = \pi \int_{e}^{e^{3}} \ln x \ dx = \pi (x \ln x|_{e}^{e^{3}} - \int_{e}^{e^{3}} dx) = \pi (x \ln x|_{e}^{e^{3}} - x|_{e}^{e^{3}})$$

$$=\pi(3e^3-e-e^3+e)=2\pi e^3$$

$$x^2=\sqrt{2x}\Rightarrow x^4=2x\Rightarrow x^4-2x=0\Rightarrow x(x^3-2)=0\Rightarrow x=0, x=\sqrt[3]{2}$$

15
$$V = \pi \int_0^{\sqrt[3]{2}} \left(\left(\sqrt{2x} \right)^2 - (x^2)^2 \right) dx = \pi \int_0^{\sqrt[3]{2}} (2x - x^4) dx$$

$$= \pi \left(x^2 - \frac{1}{5} x^5 \right) \Big|_{0}^{\sqrt[3]{2}} = \pi \left(\sqrt[3]{4} - \frac{2\sqrt[3]{4}}{5} \right) = \frac{3\pi\sqrt[3]{4}}{5}$$

$$y = 4 \Rightarrow x^2 + 16 = 25 \Rightarrow x^2 = 9 \Rightarrow x = -3, x = 3$$

$$x^2 + y^2 = 25 \Longrightarrow y^2 = 25 - x^2$$

16
$$V = \pi \int_{-3}^{3} (y^2 - (4)^2) dx = \pi \int_{-3}^{3} (25 - x^2 - 16) dx = \pi \int_{-3}^{3} (9 - x^2) dx$$

$$= \pi \left(9x - \frac{1}{3}x^3\right)\Big|_{-3}^3 = \pi \left((27 - 9) - (-27 + 9)\right) = 36\pi$$

الدرس السادس

المعادلة التفاضلية (كتاب الطالب)

	مسلة اليوم صفحة 91
	$\frac{dA}{dt} = 2(20 - A)$
مي إن الوط الويز الفناء	$\int \frac{dA}{20-A} = \int 2 dt$
tional Cen	- In 20 - A = 2t + K اهو ثابت التكامل)
141	$-\ln 15 = 0 + K \Rightarrow K = -\ln 15$ (يتعويض الزبن 0 ودرجة الحرارة 5)
1	$\Rightarrow -\ln 20 - A = 2t - \ln 15$
ر آزالوط توپرالساد	$ ightarrow \ln rac{15}{20-A} = 2t$ إنن، يمكن نمنجة درجة الحرارة C بعد t ساعة بالعلاقة الآتية:
lional Cen	$\ln \left \frac{15}{20 - A} \right = 2t$ Center National Center National Center
	نعوض 18 $A=18$ في تعلاقة: $A=18$ ا ا فينتج:
2	$\ln \left \frac{15}{20-18} \right = 2t \Rightarrow t = \frac{1}{2} \ln \frac{15}{2} = \frac{\ln 15 - \ln 2}{2} \approx 1$ إذن، تصبح درجة حرارة السائل 18° C بعد مرور ساعة واحدة تقريبًا بعد وضعه في الغرفة.
	المنافعة عن المنافعة المنافعة عن المنافعة
tional Cen	$y' = 4e^x + 15e^{3x}$ Capter National Center $y'' = 4e^x + 45e^{3x}$ National Center
а	$y'' - 4y' + 3y = 4e^x + 45e^{3x} - 4(4e^x + 15e^{3x}) + 3(4e^x + 5e^{3x}) = 0$
	$y'' - 4y' + 3y = 0$ إِذْنَ $y = 4e^x + 5e^{3x}$ إِذْنَ $y = 4e^x + 5e^{3x}$
	$y' = \cos x$ $y'' = -\sin x$
lion b Cen	$y'' - 4y' + 3y = -\sin x - 4\cos x + 3\sin x = 2\sin x - 4\cos x \neq 0$ الذن $y'' - 4y' + 3y = 0$ ليس حلا للمعادلة التقاضلية $y = \sin x$ الذن
	240

$$\sin^2 x \frac{dy}{dx} = y^2 \cos^2 x$$

$$\sin^2 x dy = y^2 \cos^2 x \, dx$$

$$\frac{dy}{v^2} = \frac{\cos^2 x}{\sin^2 x} dx \implies \int y^{-2} dy = \int \cot^2 x dx$$

$$\int y^{-2} dy = \int (\csc^2 x - 1) dx$$

$$\Rightarrow \frac{-1}{y} = -\cot x - x + C \Rightarrow \frac{1}{y} = x + \cot x + C$$

أتحقق من فهمي صفحة 98

$$dy = xy^2 e^{2x} dx$$

$$\int \frac{dy}{v^2} = \int xe^{2x} dx$$

$$u = x$$

$$u = x dv = e^{2x} dx$$

$$du = dx$$

$$du = dx v = \frac{1}{2}e^{2x}$$

$$\Rightarrow \int \frac{dy}{y^2} = \frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x} dx$$

$$\Rightarrow -\frac{1}{v} = \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + C$$
 الحل العلم هو:

$$(0,1)$$
 بتویض $\Rightarrow -1 = -\frac{1}{4} + C \Rightarrow C = -\frac{3}{4}$

$$-\frac{1}{y} = \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} - \frac{3}{4}$$

$$\frac{dy}{y} = \cos x \ dx$$

$$\int \frac{dy}{y} = \int \cos x \ dx \Rightarrow \ln|y| = \sin x + C$$

b

$$0=1+C\Rightarrow C=-1$$

$$\left(\frac{\pi}{2},1\right)$$
 بتعویض

$$\ln|y| = \sin x - 1$$

أتحقق من فهمي صفحة 100

$$\frac{ds}{dt} = st\sqrt{t+1} \Longrightarrow \frac{ds}{s} = t\sqrt{t+1}dt$$

$$\int \frac{ds}{s} = \int t\sqrt{t+1}dt$$

$$u=t+1 \Rightarrow du=dt$$
, $t=u-1$

$$\int t\sqrt{t+1}dt = \int (u-1)\sqrt{u}du = \int (u-1)u^{\frac{1}{2}}du = \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right)du$$

$$= \frac{2}{5}u^{\frac{5}{2}} - \frac{2}{3}u^{\frac{3}{2}} + C$$

$$= \frac{2}{5}(t+1)^{\frac{5}{2}} - \frac{2}{3}(t+1)^{\frac{3}{2}} + C$$

$$\int \frac{ds}{s} = \int t\sqrt{t+1}dt$$

$$\Rightarrow \ln|s| = \frac{2}{5}(t+1)^{\frac{5}{2}} - \frac{2}{3}(t+1)^{\frac{3}{2}} + C$$

الموقع (s(t) لا يمكن أن يكون 0 لأن In 0 غير معرف ولا يمكن أن يكون سالبًا لأن 1 = (s(0)

واقتران الموقع متصل، ولذا يمكننا أن نحذف رمز القيمة المطلقة ونعتبر In |s | = In s

بتعويض 1=2 عندما t=0 ينتج:

$$0 = \frac{2}{5} - \frac{2}{3} + C \Rightarrow C = \frac{4}{15}$$

$$\Rightarrow \ln s = \frac{2}{5} (t+1)^{\frac{5}{2}} - \frac{2}{3} (t+1)^{\frac{3}{2}} + \frac{4}{15}$$

نعوض 1=3 لنجد s الموقع المطلوب:

$$\ln s(3) = \frac{64}{5} - \frac{16}{3} + \frac{4}{15} = \frac{116}{15} \Rightarrow s(3) = e^{\frac{116}{15}}$$

	أتحقق من قهمي صفحة 102				
	$\frac{dP}{dt} = \frac{1}{20000} p(1000 - P)$				
	$\int \frac{dP}{P(1000-P)} = \int \frac{1}{20000} dt$				
	بتجزئة الكسر داخل التكامل في الطرف الأيسر:				
ional Cer	$\int \left(\frac{\frac{1}{1000}}{P} + \frac{\frac{1}{1000}}{1000 - P}\right) dP = \int \frac{1}{20000} dt$				
а	$\frac{1}{1000}$ ln $ P - \frac{1}{1000}$ ln $ 1000 - P = \frac{1}{20000}t + C$ خل عام:				
	$20 \ln P - 20 \ln 1000 - P = t + C$				
	$20 \ln \left \frac{P}{1000 - P} \right = t + C$				
ional Cer	بتعویض $P=2500$ عند $P=2500$ بنتج:				
	$C = 20 \ln \frac{2500}{1500} = 20 \ln \frac{5}{3}$ $\Rightarrow 20 \ln \frac{P}{1000 - P} = t + 20 \ln \frac{5}{3}$				
	نعوض 1800 $P=1$ في المعاللة الأكبيرة:				
b	$\Rightarrow 20 \ln \left(\frac{9}{4}\right) = t + 20 \ln \frac{5}{3} \Rightarrow t = 20 \ln \frac{27}{20} \approx 6$				
misulim term	إذن، يصبح عدد الغزلان 1800 غزال بعد 6 سنوات تقريبًا من بدء الدراسة.				
	أتدرب وأحل المسائل صفحة 102				
	$\mathbf{y}' = \frac{1}{2\sqrt{x}}$				
1	$xy' - y = x\frac{1}{2\sqrt{x}} - \sqrt{x} = \frac{1}{2}\sqrt{x} - \sqrt{x} = -\frac{1}{2}\sqrt{x} \neq 0$				
ional Cer	الذي $y=\sqrt{x}$ ليس حلا للمعادلة التفاضلية National Cente $xy'-y=0$				
	$y' = x\left(\frac{1}{x}\right) + \ln x - 5 = \ln x - 4$				
2	$y'' = \frac{1}{x} \implies y'' - \frac{1}{x} = \frac{1}{x} - \frac{1}{x} = 0$				
THE CALL	$y''-rac{1}{2}=0$ فو حل للمعادلة لتفاضلية $y=x\ln x-5x+7$ إذن				

$$dy = \frac{x}{(x^2 + 1)^2} dx$$

$$\int dy = \int \frac{x}{(x^2+1)^2} dx$$

$$u = x^2 + 1 \Longrightarrow dx = \frac{du}{2x}$$

$$\Rightarrow \int \frac{x}{(x^2+1)^2} dx = \int \frac{x}{u^2} \frac{du}{2x} = \frac{1}{2} \int \frac{1}{u^2} du$$

$$=-\frac{1}{2n}+C=-\frac{1}{2(x^2+1)}+C$$

$$\Rightarrow \int dy = \int \frac{x}{(x^2+1)^2} dx \Rightarrow y = -\frac{1}{2(x^2+1)} + C$$

$$\frac{dy}{dx} = xe^x e^y \Longrightarrow \frac{dy}{e^y} = xe^x dx$$

$$\int \frac{dy}{e^y} = \int x e^x dx$$

$$\Rightarrow \int e^{-y} dy = \int x e^{x} dx \qquad \Rightarrow -e^{-y} = \int x e^{x} dx$$

$$u = x$$
 $dv = e^x dx$

$$du = dx$$
 $v = e^x$

$$\Rightarrow \int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C$$

$$\Rightarrow -e^{-y} = xe^x - e^x + C$$

$$\frac{dy}{y^2} = \frac{x^{-2}}{e^{-\frac{1}{x}}} dx = \frac{e^{\frac{1}{x}}}{x^2} dx \implies \int y^{-2} dy = \int \frac{e^{\frac{1}{x}}}{x^2} dx \implies -y^{-1} = \int \frac{e^{\frac{1}{x}}}{x^2} dx$$

:نستخدم التعويض
$$\int \frac{e^{\frac{1}{x}}}{x^2} dx$$
 الإيجاد

$$u = \frac{1}{x} \Longrightarrow \frac{du}{dx} = -\frac{1}{x^2} \Longrightarrow dx = -x^2 du$$

$$\Rightarrow \int \frac{e^{\frac{1}{x}}}{x^2} dx = \int \frac{e^u}{x^2} \times -x^2 du = \int -e^u du = -e^u + C = -e^{\frac{1}{x}} + C$$

$$-y^{-1} = \int \frac{e^{\frac{1}{x}}}{x^2} dx \Longrightarrow \frac{1}{y} = e^{\frac{1}{x}} + C$$

$$\int \frac{dy}{y} = \int \frac{x}{x-3} dx$$

$$\int \frac{dy}{y} = \int \left(1 + \frac{3}{x - 3}\right) dx$$

$$\ln|y| = x + 3\ln|x - 3| + C$$

$$\frac{dy}{\sin^2 y} = \frac{3x^2}{(x^3 + 2)} dx$$

$$\int \frac{dy}{\sin^2 y} = \int \frac{3x^2}{(x^3 + 2)} dx$$
$$\int \csc^2 y \, dy = \int \frac{3x^2}{x^3 + 2} \, dx$$

$$-\cot y = \ln |x^3 + 2| + C$$

$$\frac{dy}{y^3} = \ln x \, dx$$

$$\int \frac{dy}{y^3} = \int \ln x \, dx$$

Cen
$$u = \ln x$$

$$u = \ln x \qquad dv = dx$$

$$du = \frac{dx}{x}$$

$$v = x$$

$$\int \ln x \, dx = x \ln x - \int x \frac{dx}{x} = x \ln x - x + C$$

$$\Rightarrow \int y^{-3} dy = \int \ln x \, dx \Rightarrow -\frac{1}{2} y^{-2} = x \ln x - x + C$$

إن لم تستطع قول الحق فلا تصفق للباطل

لإيجاد Inxdx نستخدم الأجزاء:

$$\frac{dy}{y^2 - 1} = 2x^3 dx$$

$$\int \frac{dy}{y^2 - 1} = \int 2x^3 dx$$

لإيجاد
$$\frac{dy}{y^2-1}$$
 نستخدم الكسور الجزنية:

$$\frac{1}{y^2 - 1} = \frac{1}{(y - 1)(y + 1)} = \frac{A}{y - 1} + \frac{B}{y + 1}$$

$$A(y+1)+B(y-1)=1 \Rightarrow y=1 \Rightarrow A=\frac{1}{2}$$

$$\Rightarrow \frac{1}{y^2 - 1} = \frac{\frac{1}{2}}{y - 1} + \frac{-\frac{1}{2}}{y + 1} \Rightarrow \int \frac{dy}{y^2 - 1} = \int 2x^3 dx$$

$$\Rightarrow \int \left(\frac{\frac{1}{2}}{y-1} + \frac{-\frac{1}{2}}{y+1}\right) dy = \int 2x^3 dx$$

$$\Rightarrow \frac{1}{2}\ln|y-1| - \frac{1}{2}\ln|y+1| = \frac{1}{2}x^4 + C \qquad \Rightarrow \ln\left|\frac{y-1}{y+1}\right| = x^4 + C$$

 $y\,dy = \sin^3 x \cos^2 x\,dx$

$$\int y \, dy = \int \sin^3 x \cos^2 x \, dx$$

العويض: $\int \sin^3 x \cos^2 x \, dx$ التعويض:

$$u = \cos x \implies dx = \frac{du}{-\sin x}$$

$$\int \sin^3 x \cos^2 x \, dx = \int \sin^3 x \, u^2 \, \frac{du}{-\sin x}$$

$$= \int -\sin^2 x \, u^2 \, du = \int (-1 + \cos^2 x) \, u^2 \, du$$

$$= \int (-1+u^2) u^2 du = \int (u^4-u^2) du$$

$$= \frac{1}{5}u^5 - \frac{1}{3}u^3 + C = \frac{1}{5}\cos^5 x - \frac{1}{3}\cos^3 x + C$$

$$\Rightarrow \int y \, dy = \int \sin^3 x \cos^2 x \, dx$$

$$\Rightarrow \frac{1}{2}y^2 = \frac{1}{5}\cos^5 x - \frac{1}{3}\cos^3 x + C$$

$$\frac{dy}{\sqrt{y}} = \sqrt{x} dx$$

$$\int \frac{dy}{\sqrt{y}} = \int \sqrt{x} \, dx \implies \int y^{-\frac{1}{2}} dy = \int x^{\frac{1}{2}} \, dx \implies 2y^{\frac{1}{2}} = \frac{2}{3}x^{\frac{3}{2}} + C$$

$$\frac{dy}{y} = \ln x^{\frac{1}{2}} dx$$

$$u = \ln x \qquad \qquad dv = dx$$

$$du = \frac{dx}{x}$$

$$v = x$$

$$\int \ln x \, dx = x \ln x - \int x \frac{dx}{x} = x \ln x - x + C$$

$$\Rightarrow \int \frac{1}{2} \ln x \ dx = \frac{1}{2} x \ln x - \frac{1}{2} x + C$$

$$\int \frac{dy}{y} = \int \frac{1}{2} \ln x \ dx \implies \ln|y| = \frac{1}{2} x \ln x - \frac{1}{2} x + C$$

$$(2x+1)(x+2)dy = -3(y-2)dx$$

$$\int -\frac{1}{3} \frac{dy}{y-2} = \int \frac{dx}{(2x+1)(x+2)}$$

المعاد
$$\int \frac{dx}{(2x+1)(x+2)}$$
 المعاد الكسور الجزئية:

$$\frac{1}{(2x+1)(x+2)} = \frac{A}{2x+1} + \frac{B}{x+2}$$

$$A(x+2) + B(2x+1) = 1$$

$$x=-\frac{1}{2}\Longrightarrow A=\frac{2}{3}$$

$$x = -2 \Longrightarrow B = -\frac{1}{3}$$

$$\Rightarrow \frac{1}{(2x+1)(x+2)} = \frac{\frac{2}{3}}{2x+1} + \frac{-\frac{1}{3}}{x+2}$$

$$\Rightarrow \int -\frac{1}{3} \frac{dy}{y-2} = \int \frac{dx}{(2x+1)(x+2)}$$

$$\Rightarrow -\frac{1}{3}\ln|y-2| = \frac{1}{3}\ln|2x+1| - \frac{1}{3}\ln|x+2| + C$$

$$\Rightarrow -\ln|y-2| = \ln|2x+1| - \ln|x+2| + C$$

$$\frac{dy}{dx} = y^2 \sqrt{4 - x} \implies \frac{dy}{y^2} = \sqrt{4 - x} dx \implies \int \frac{dy}{y^2} = \int \sqrt{4 - x} dx$$

$$\int y^{-2} dy = \int (4-x)^{\frac{1}{2}} dx$$

$$-\frac{1}{y} = -\frac{2}{3}(4-x)^{\frac{3}{2}} + C$$
 | Itali

نجد المل الخاص بتعريض (1,2):

$$-\frac{1}{2} = -2\sqrt{3} + C \Longrightarrow C = 2\sqrt{3} - \frac{1}{2}$$

$$-rac{1}{y}=-rac{2}{3}(4-x)^{rac{3}{2}}+2\sqrt{3}-rac{1}{2}$$
 الحل الخاص هو:

$$\frac{dy}{dx} = \frac{2\sin^2 x}{y} \implies ydy = 2\sin^2 x \, dx \implies \int ydy = \int 2\sin^2 x \, dx$$

$$\int y dy = \int (1 - \cos 2x) dx$$

$$\frac{1}{2}y^2 = x - \frac{1}{2}\sin 2x + C$$
 : الحل العام

نجد المل الخاص بتعويض (0,1):

$$\frac{1}{2}=0+C \Longrightarrow C=\frac{1}{2}$$

$$\frac{1}{2}y^2 = x - \frac{1}{2}\sin 2x + \frac{1}{2}$$

الحل الخاص :

$$\frac{dy}{dx} = 2\cos^2 x \cos^2 y$$

$$\frac{dy}{\cos^2 y} = 2\cos^2 x dx$$

$$\int \frac{dy}{\cos^2 y} = \int 2\cos^2 x dx$$

$$\int \sec^2 y \, dy = \int (1 + \cos 2x) \, dx$$

$$\tan y = x + \frac{1}{2}\sin 2x + C : \text{ the limit of } x + C$$

$$1=0+0+C$$
 $\left(0,\frac{\pi}{4}\right)$ نجد الحل الخاص بتعویض

$$C=1$$
 tan $y=x+\frac{1}{2}\sin 2x+1$: الحل الخاص

$$\frac{dy}{dx} = \frac{\cos x e^{\sin x}}{e^y} \implies \int e^y dy = \int \cos x e^{\sin x} dx$$

الإيجاد cos x e^{sin x} dx نستخدم التعويض:

$$u = \sin x \implies \frac{du}{dx} = \cos x \implies dx = \frac{du}{\cos x}$$

$$\int \cos x \, e^{\sin x} \, dx = \int \cos x \, e^{u} \times \frac{du}{\cos x} = \int e^{u} \, du = e^{u} + C$$

$$=e^{\sin x}+C$$

$$\Rightarrow \int e^y dy = \int \cos x \, e^{\sin x} \, dx$$
 $e^y = e^{\sin x} + C$: الحل العام

$$e^{y} = e^{\sin x} + C$$

$$e^0 = e^0 + C$$

 $e^0=e^0+C$: $(\pi,0)$ نجد لحل الخاص بتعویض

$$\Rightarrow C = 0 \Rightarrow e^y = e^{\sin x}$$

$$\rho y = \rho \sin x$$

$$\frac{dy}{dx} = \frac{8x - 18}{(3x - 8)(x - 2)} \implies \int dy = \int \frac{8x - 18}{(3x - 8)(x - 2)} dx$$

 $\int rac{8x-18}{(3x-8)(x-2)} dx$ لستخدم الكسور الجزئية:

$$\frac{8x-18}{(x-8)(x-2)} = \frac{A}{3x-8} + \frac{B}{x-2}$$

$$A(x-2) + B(3x-8) = 8x - 18$$

$$x = 2 \Rightarrow B = 1$$

$$x = \frac{8}{3} \Longrightarrow A = 5$$

$$\Rightarrow \frac{8x - 18}{(3x - 8)(x - 2)} = \frac{5}{3x - 8} + \frac{1}{x - 2}$$

$$\Rightarrow \int dy = \int \frac{8x - 18}{(3x - 8)(x - 2)} dx \Rightarrow y = \int \left(\frac{5}{3x - 8} + \frac{1}{x - 2}\right) dx$$

$$\Rightarrow y = \frac{5}{3}\ln|3x - 8| + \ln|x - 2| + C$$

الحل العام:

$$8 = 0 + 0 + C \implies C = 8$$

$$y = \frac{5}{3}\ln|3x - 8| + \ln|x - 2| + 8$$

Agricmal Centra الخاص: Wational Centra

29

30

$$\int -\frac{dr}{r^2} = \int 0.0075 \, dt$$

 $\frac{1}{r}=0.0075t+C$

لإيجاد الحل الخاص نعوض 20
$$\mathbf{r}=2$$
، و $t=0$ في الحل العام

$$\frac{1}{20}=0+C \implies C=\frac{1}{20}$$

$$\frac{1}{r} = 0.0075t + \frac{1}{20} \Longrightarrow r = \frac{20}{1 + 0.15t}$$

ضع 10= r في المعادلة الثانجة:

$$10 = \frac{20}{1+0.15t} \Rightarrow 0.1 = \frac{1+0.15t}{20} \Rightarrow 2 = 1+0.15t$$

 $\Rightarrow t = \frac{1}{0.15} \approx 6.67 \text{ s}$

إنن، يكون طول نصف قطر الكرة 10 cm ويعد 6.67 ثانية تقريبًا بعد بدء الكماشها.

$$\int \frac{dn}{n} = \int 0.2(0.2 - \cos t)dt$$

$$\ln n = 0.2(0.2t - \sin t) + C$$

III h = 0.2(0.2t - SIII t) + 0

$$n=400$$
 الخاص نعوض $n=400$ و $t=0$ في الحل العام National Car لإيجاد الحل

 $\ln 400 = 0 + C \Longrightarrow C = \ln 400$

$$\ln n = 0.2(0.2t - \sin t) + \ln 400$$

$$\Rightarrow \ln \frac{n}{400} = 0.2(0.2t - \sin t) \Rightarrow n = 400e^{0.2(0.2t - \sin t)}$$

نعوض t = 3 في المعائلة الأخيرة

$$n = 400e^{0.2(0.2t - \sin t)}$$
$$= 400e^{0.2(0.6 - \sin 3)}$$

= 4006

$$\approx 400e^{0.12-0.028} \approx 400e^{0.092} \approx 439$$

إذن، بعد 3 أسابيع يكون عدد الحشرات439 حشرة تقريبًا.

$$\frac{dy}{dx} = y \cos x$$

$$\int \frac{dy}{y} = \int \cos x \, dx \implies \ln|y| = \sin x + C$$

$$0 = 0 + C \Rightarrow C = 0 \Rightarrow \ln|y| = \sin x \Rightarrow y = e^{\sin x}$$

 $y = -e^{\sin x}$ ملاحظة: منحنى الاقتران $y = -e^{\sin x}$ ملاحظة

$$\int \frac{dy}{y} = \int \frac{dx}{x(x+1)}$$

 $\frac{dx}{x(x+1)}$ لإيجاد $\frac{dx}{x(x+1)}$ أستخدم الكسور الجزئية:

$$\frac{1}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$$

$$A(x+1) + B(x) = 1$$

$$x = 0 \Rightarrow A = 1$$

$$x = -1 \Rightarrow B = -1$$

$$\Rightarrow \frac{1}{x(x+1)} = \frac{1}{x} + \frac{-1}{x+1}$$

$$\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x(x+1)} \Rightarrow \ln|y| = \int \left(\frac{1}{x} + \frac{-1}{x+1}\right) dx$$

$$\Rightarrow \ln|y| = \ln|x| - \ln|x + 1| + C$$
 National Center

لإيجاد قيمة C نضع x=1، وy =3 في الحل العام

$$\ln 3 = 0 - \ln 2 + C \Longrightarrow C = \ln 3 + \ln 2 = \ln 6$$

$$\Rightarrow \ln|y| = \ln|x| - \ln|x + 1| + \ln 6$$

$$\Rightarrow \ln|y| = \ln\left|\frac{6x}{x+1}\right|$$

$$\Rightarrow |y| = \left| \frac{6x}{x+1} \right| \Rightarrow y = \frac{6x}{x+1}$$

$$(1,3)$$
 المخطة: منحنى الاقتران $y = -\frac{6x}{x+1}$ الايمر بانقطة

$$\frac{dy}{dx} = \frac{x}{y^2} - \frac{1}{y^2} + y - xy$$

$$\frac{dy}{dx} = \frac{1}{y^2}(x-1) - y(x-1) = (x-1)\left(\frac{1}{y^2} - y\right) \Rightarrow \frac{dy}{\frac{1}{y^2} - y} = (x-1)dx$$

33
$$\int \frac{dy}{\frac{1}{y^2} - y} = \int (x - 1) dx \implies \int \frac{y^2}{1 - y^3} dy = \int (x - 1) dx$$

$$\frac{-1}{3} \int \frac{-3y^2}{1-y^3} dy = \int (x-1) dx \implies \frac{-1}{3} \ln |1-y^3| = \frac{1}{2}x^2 - x + C$$

$$\frac{dy}{dx} = x \left(\frac{1}{2y - 1} - \frac{2}{3y - 2} \right) = x \left(\frac{3y - 2 - 4y + 2}{6y^2 - 7y + 2} \right) = x \left(\frac{-y}{6y^2 - 7y + 2} \right)$$

$$\Rightarrow \frac{6y^2 - 7y + 2}{-y} dy = x dx \Rightarrow \int \frac{6y^2 - 7y + 2}{-y} dy = \int x dx$$

$$\int \left(-6y + 7 - \frac{2}{y}\right) dy = \int x \, dx \implies -3y^2 + 7y - 2\ln|y| = \frac{1}{2}x^2 + C$$

$$\frac{dy}{dx} = 1 + \tan^2 x + \tan^2 y + \tan^2 x \tan^2 y$$

$$= \sec^2 x + \tan^2 y (1 + \tan^2 x)$$

$$= \sec^2 x + \tan^2 y \sec^2 x$$

$$= \sec^2 x(1 + \tan^2 y)$$

$$= \sec^2 x \sec^2 y$$

$$\frac{dy}{\sec^2 y} = \sec^2 x \, dx$$

$$\int \frac{dy}{\sec^2 y} = \int \sec^2 x \, dx$$

$$\int \cos^2 y \ dy = \int \sec^2 x \, dx$$

$$\int \frac{1}{2} (1 + \cos 2y) \ dy = \int \sec^2 x \, dx \text{ ational Center}$$

$$\frac{1}{2}\left(y+\frac{1}{2}\sin 2y\right)=\tan x+C$$

الدرس السادس

المعادلة التفاضلية (كتاب التمارين)

$$1 \qquad \frac{dy}{dx} = 3x^2y \Rightarrow \frac{dy}{y} = 3x^2dx \Rightarrow \int \frac{dy}{y} = \int 3x^2dx \Rightarrow \ln|y| = x^3 + C$$

$$\frac{dy}{dx} = \frac{y^2 - 4}{x} \Rightarrow \frac{dx}{x} = \frac{dy}{y^2 - 4} \Rightarrow \int \frac{dy}{y^2 - 4} = \int \frac{dx}{x}$$

$$\frac{1}{y^2 - 4} = \frac{1}{(y - 2)(y + 2)} = \frac{A}{y - 2} + \frac{B}{y + 2}$$

$$\Rightarrow A(y+2) + B(y-2) = 1$$

$$y=-2 \Longrightarrow B=-\frac{1}{4}$$

$$y = 2 \Longrightarrow A = \frac{1}{4}$$

$$\Rightarrow \frac{1}{y^2 - 4} = \frac{\frac{1}{4}}{y - 2} + \frac{\frac{1}{4}}{y + 2}$$

$$\int \frac{dy}{y^2 - 4} = \int \frac{dx}{x} \Longrightarrow \int \left(\frac{\frac{1}{4}}{y - 2} + \frac{-\frac{1}{4}}{y + 2} \right) dy = \int \frac{dx}{x}$$

$$\Rightarrow \frac{1}{4}\ln|y-2| - \frac{1}{4}\ln|y+2| = \ln|x| + C \Rightarrow \frac{1}{4}\ln\left|\frac{y-2}{y+2}\right| = \ln|x| + C$$

$$\frac{dy}{dx} = e^{x+y} \Rightarrow \frac{dy}{dx} = e^x \times e^y \Rightarrow \frac{dy}{e^y} = e^x dx \Rightarrow \int \frac{dy}{e^y} = \int e^x dx$$
$$\Rightarrow \int e^{-y} dy = \int e^x dx \Rightarrow -e^{-y} = e^x + C$$

$$\frac{dy}{dx} = \frac{x \sec y}{ye^{x^2}} \Rightarrow \frac{ydy}{\sec y} = \frac{xdx}{e^{x^2}} \Rightarrow \int y \cos y \, dy = \int xe^{-x^2} \, dx$$

نجد y cosy dy بالأجزاء (من دون إضافة ثابت التكامل):

$$u = y$$
 $dv = \cos y \, dy$

$$du = dy$$
 $v = \sin y$

$$\Rightarrow \int y \cos y \, dy = y \sin y - \int \sin y \, dy = y \sin y + \cos y + C$$

نجد $xe^{-x^2} dx$ بالتعويض (من بون إضافة ثابت التكامل):

$$u = -x^2 \Rightarrow du = -2x dx \Rightarrow dx = -\frac{du}{2x}$$

$$\Rightarrow \int xe^{-x^2} dx = \int xe^{u} \times \frac{du}{-2x} = -\int \frac{1}{2}e^{u} du = -\frac{1}{2}e^{u} = -\frac{1}{2}e^{-x^2}$$

نضيف ثابت التكامل في الخطوة الأخيرة:

$$\int y \cos y \, dy = \int x e^{-x^2} \, dx \quad \Rightarrow y \sin y + \cos y = -\frac{1}{2} e^{-x^2} + C$$

$$\frac{dy}{dx} = \frac{y-3}{y} \Rightarrow \frac{y}{y-3}dy = dx \Rightarrow \int \frac{y}{y-3}dy = \int dx$$

$$\Rightarrow \int \left(1 + \frac{3}{y - 3}\right) dy = \int dx$$

$$\Rightarrow y + 3\ln|y - 3| = x + C$$

$$\frac{dy}{dx} = \frac{x \ln x}{y^2} \Rightarrow y^2 dy = x \ln x dx \Rightarrow \int y^2 dy = \int x \ln x dx$$

نجد xlnxdx بالأجزاء:

$$u = \ln x$$
 $dv = xdx$

$$du = \frac{1}{x}dx \qquad v = \frac{1}{2}x^2$$

$$\Rightarrow \int x \ln x \, dx = \frac{1}{2} x^2 \ln x - \int \frac{1}{2} x \, dx = \frac{1}{2} x^2 \ln x - \frac{1}{4} x^2$$

$$\int y^2 dy = \int x \ln x \, dx$$

$$\Rightarrow \frac{1}{3}y^3 = \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C$$

$$\Rightarrow \int dy = \int -15 \sin 8x \, dx$$

$$7 \implies y = \frac{15}{8} \cos 8x + C$$

$$y\left(\frac{\pi}{8}\right) = \frac{15}{8}\cos 8\left(\frac{\pi}{8}\right) + C$$
 الثارط الأولي:

$$0=-\frac{15}{8}+C\Longrightarrow C=\frac{15}{8}$$

$$\Rightarrow y = \frac{15}{8}\cos 8x + \frac{15}{8}$$

الحل العام:

$$\frac{dy}{dx} = x^2 \sqrt{y}$$

$$\Rightarrow \frac{dy}{\sqrt{y}} = x^2 dx$$

$$\Rightarrow \int \frac{dy}{\sqrt{y}} = \int x^2 dx$$

$$\Rightarrow 2\sqrt{y} = \frac{1}{3}x^3 + C$$

$$y(\mathbf{0}) = \mathbf{2} \Rightarrow \mathbf{0} + C = \mathbf{2} \Rightarrow C = \mathbf{2}$$
 : الشرط الأولي

$$\Rightarrow 2\sqrt{y} = \frac{1}{3}x^3 + 2$$

$$\frac{dy}{dx} = \frac{4\sqrt{x}}{\cos y} , y(0) = 0$$

$$\Rightarrow \cos y \, dy = 4\sqrt{x} dx$$

$$\Rightarrow \int \cos y \, dy = \int 4\sqrt{x} dx$$

$$\Rightarrow \sin y = \frac{8}{3}x^{\frac{3}{2}} + C \qquad :$$

$$y(0)=0\Longrightarrow 0=0+C\Longrightarrow C=0$$
 الشرط الأولى:

$$\Rightarrow \sin y = \frac{8}{3}x\sqrt{x}$$

$$\frac{dy}{dx} = xe^{y-x^2}, y(1) = 0$$

$$\Rightarrow \frac{dy}{dx} = xe^y e^{-x^2} \Rightarrow \frac{dy}{e^y} = xe^{-x^2} dx$$

$$\Rightarrow \int \frac{dy}{e^y} = \int xe^{-x^2} dx$$

نجد
$$xe^{-x^2}dx$$
 پاتتویض:

National Center
$$u = -x^2 \Rightarrow du = -2xdx \Rightarrow dx = \frac{du}{-2x}$$

$$\Rightarrow \int \frac{dy}{e^{y}} = \int xe^{-x^{2}}dx = \int xe^{u} \times \frac{du}{-2x} = \int -\frac{1}{2}e^{u}du = -\frac{1}{2}e^{u} = -\frac{1}{2}e^{-x^{2}}$$
$$-e^{-y} = -\frac{1}{2}e^{-x^{2}} + C$$

$$\Rightarrow e^{-y} = rac{1}{2}e^{-x^2} + C$$
 : الحل العام

$$y(1)=0 \Rightarrow 1=rac{1}{2e}+C \Rightarrow C=1-rac{1}{2e}$$
 الشرط الأولى:

$$\Rightarrow e^{-y} = rac{1}{2}e^{-x^2} + 1 - rac{1}{2e}$$
 : المل الخاص

$$\frac{dy}{dx} = xe^{-y} , y(4) = \ln 2$$

$$\Rightarrow \frac{dy}{e^{-y}} = x dx$$
 $\Rightarrow \int e^y dy = \int x dx \Rightarrow e^y = \frac{1}{2}x^2 + C$ الحل العام:

$$y(4) = \ln 2 \Rightarrow 2 = 8 + C \Rightarrow C = -6$$
 الشرط الأولى:

$$\Rightarrow e^y = \frac{1}{2}x^2 - 6 \qquad : \text{ the limit of } x = 0$$

$$\frac{dy}{dx} = (3x^2 + 4)y^2$$
, $y(2) = -0.1$

$$\Rightarrow \frac{dy}{v^2} = (3x^2 + 4)dx$$

$$\Rightarrow \int y^{-2} dy = \int (3x^2 + 4) dx$$

$$\Rightarrow -\frac{1}{y} = x^3 + 4x + C$$

$$y(2) = -0.1 \Rightarrow 10 = 8 + 8 + C \Rightarrow C = -6$$
 الشرط الأولي:

$$\Rightarrow -\frac{1}{y} = x^3 + 4x - 6$$

11

$$\Rightarrow y^{-0.8}dy = \frac{1}{2}dt$$

$$\Rightarrow \int y^{-0.8} dy = \int \frac{1}{2} dt$$

$$\Rightarrow 5y^{02} = \frac{1}{2}t + C$$

$$y(0) = 1000000 \Rightarrow 5\sqrt[5]{100000} = 0 + C \Rightarrow C = 50$$

$$\Rightarrow 5\sqrt[5]{y} = \frac{1}{2}t + 50$$

14
$$5\sqrt[5]{y} = \frac{1}{2}(7) + 50 \implies \sqrt[5]{y} = 10.7 \implies y = (10.7)^5 \approx 140255$$

$$\frac{dv}{dt} = -\frac{v^2}{100}$$
, $v(0) = 20$

$$\Rightarrow -v^{-2}dv = \frac{1}{100}dt$$

$$\Rightarrow -\int v^{-2}dv = \int dt$$

$$\Rightarrow \frac{1}{v} = \frac{1}{100}t + C$$

$$v(0) = 20 \Longrightarrow \frac{1}{20} = 0 + C \Longrightarrow C = \frac{1}{20}$$

$$\Rightarrow \frac{1}{v} = \frac{1}{100}t + \frac{1}{20} \Rightarrow \frac{1}{v} = \frac{t+5}{100} \Rightarrow v = \frac{100}{t+5}$$

$$e^{y}\frac{dy}{dx} = 10 + 2\sec^{2}x, y\left(\frac{\pi}{4}\right) = 0$$

$$\Rightarrow e^{y}dy = (10 + 2\sec^2 x)dx$$

$$\Rightarrow \int e^y dy = \int (10 + 2\sec^2 x) dx$$

$$\Rightarrow e^y = 10x + 2 \tan x + C$$

$$\Rightarrow e^{y} = 10x + 2\tan x + C$$

$$y\left(\frac{\pi}{4}\right) = 0 \Rightarrow 1 = \frac{5\pi}{2} + 2 + C \Rightarrow C = -1 - \frac{5\pi}{2}$$

$$\Rightarrow e^{y} = 10x + 2\tan x - 1 - \frac{5\pi}{2}$$

$$\frac{dy}{dx} + \frac{y}{x} = 0 , y(6) = 4$$

$$\Rightarrow \frac{dy}{dx} = -\frac{y}{x} \Rightarrow \frac{dy}{y} = -\frac{dx}{x}$$

$$\Rightarrow \int \frac{dy}{y} = \int -\frac{dx}{x}$$

$$\Rightarrow \ln|y| = -\ln|x| + C$$

$$y(6) = 4 \Rightarrow \ln 4 = -\ln 6 + C \Rightarrow C = \ln 24$$

$$\Rightarrow \ln|y| = -\ln|x| + \ln 24$$

$$\Rightarrow \ln|y| + \ln|x| = \ln 24$$

$$\Rightarrow \ln|xy| = \ln 24$$

$$\Rightarrow |xy| = 24$$

$$\Rightarrow |xy| = 24$$

$$\Rightarrow |y| = \frac{24}{|x|} \Rightarrow y = \frac{24}{x} \quad \text{or} \quad \Rightarrow y = -\frac{24}{x}$$

$$\Rightarrow y = \frac{24}{x}$$
 (لأن $y = -\frac{24}{x}$ لا تحقق شروط المعوال $y = -\frac{24}{x}$

إجابات إختبار نهاية وحدة التكامل

	AND THE PARTY OF THE PARTY.
	الغثيار نهاية الوحدة صفحة 105
1 balliff	$\int_0^2 e^{2x} = \frac{1}{2} e^{2x} \Big _0^2 = \frac{1}{2} e^4 - \frac{1}{2} \dots \dots \dots (d)$
	$\int_{-4}^{4} (4 - x) dx = \int_{-4}^{0} (4 + x) dx + \int_{0}^{4} (4 - x) dx$
2	$= \left. \left(4x + \frac{1}{2}x^2 \right) \right _{-4}^{0} + \left(4x - \frac{1}{2}x^2 \right) \right _{0}^{4}$
	=-(-16+8)+(16-8)
tralif.	
iom Cer	$A = \int_{-1}^{2} \left(x^3 - 3x^2 + 4 - (x^2 - x - 2) \right) dx$ National Certain
	$= \int_{-1}^{2} (x^3 - 4x^2 + x + 6) dx \dots (a)$
	$\int \frac{dy}{y} = \int 2x dx \implies \ln y = x^2 + C$
4	$(0,1) \Rightarrow 0 = 0 + C \Rightarrow C = 0$
	$ \Rightarrow \ln y = x^2 \Longrightarrow y = e^{x^2}$ National Center National Cen
	(a) $y=e^{x^2}$ ولكن $y=-e^{x^2}$ النجاق النقطة $y=-e^{x^2}$ النجام والكن الحل هو
5	$\int \frac{1}{\sqrt{e^x}} dx = \int e^{-\frac{1}{2}x} dx = -2e^{-\frac{1}{2}x} + C$
6	$\int \left(\tan 2x + e^{3x} - \frac{1}{x}\right) dx = \int \left(-\frac{1}{2} \times \frac{-2\sin 2x}{\cos 2x} + e^{3x} - \frac{1}{x}\right) dx$
ional Cel	National Center $= -\frac{1}{2}\ln \cos 2x + \frac{1}{3}e^{3x} - \ln x + C$

17
$$\int_0^{\frac{\pi}{8}} \sin 2x \cos 2x \, dx = \frac{1}{2} \int_0^{\frac{\pi}{8}} \sin 4x \, dx = -\frac{1}{8} \cos 4x \Big|_0^{\frac{\pi}{8}} = 0 - \left(-\frac{1}{8}\right) = \frac{1}{8}$$

$$\int \frac{4}{x^2 - 4} dx = \int \frac{4}{(x - 2)(x + 2)} dx$$

$$\frac{4}{(x - 2)(x + 2)} = \frac{A}{x - 2} + \frac{B}{x + 2}$$

$$A(x+2) + B(x-2) = 4$$

$$x=2 \Rightarrow A=1$$

$$x = -2 \Rightarrow B = -1$$

$$\frac{4}{(x-2)(x+2)} = \frac{1}{x-2} + \frac{-1}{x+2}$$

$$\int \frac{4}{x^2-4} dx = \int \frac{4}{(x-2)(x+2)} dx = \int \left(\frac{1}{x-2} + \frac{-1}{x+2}\right) dx$$

$$= \ln|x-2| - \ln|x+2| + C = \ln\left|\frac{x-2}{x+2}\right| + C$$

$$\int \frac{x+7}{x^2-x-6} dx = \int \frac{x+7}{(x-3)(x+2)} dx$$
$$\frac{x+7}{(x-3)(x+2)} = \frac{A}{x-3} + \frac{B}{x+2}$$

$$A(x+2) + B(x-3) = x+7$$

$$x=-2 \Longrightarrow B=-1$$

$$x = 3 \Longrightarrow A = 2$$

$$\frac{x+7}{(x-3)(x+2)} = \frac{2}{x-3} + \frac{-1}{x+2}$$

$$\int \frac{x+7}{x^2 - x - 6} dx = \int \frac{x+7}{(x-3)(x+2)} dx$$

$$= \int \left(\frac{2}{x-3} + \frac{-1}{x+2}\right) dx$$

$$= 2 \ln|x-3| - \ln|x+2| + C$$

$$\int \frac{x-1}{x^2-2x-8} dx = \frac{1}{2} \int \frac{2(x-1)}{x^2-2x-8} dx = \frac{1}{2} \ln |x^2-2x-8| + C$$

$$\int \frac{x^2+3}{x^3+x} dx = \int \frac{x^2+3}{x(x^2+1)} dx$$

$$\frac{x^2+3}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$$

$$A(x^2 + 1) + (Bx + C)(x) = x^2 + 3$$

$$x = 0 \Longrightarrow A = 3$$

$$x = 1 \Rightarrow 2A + B + C = 4 \Rightarrow B + C = -2$$

$$x = -1 \Rightarrow 2A + B - C = 4 \Rightarrow B - C = -2$$

$$\Rightarrow B = -2$$
 , $C = 0$

$$\frac{x^2+3}{x(x^2+1)} = \frac{3}{x} + \frac{-2x}{x^2+1}$$

$$\int \frac{x^2+3}{x^3+x} dx = \int \frac{x^2+3}{x(x^2+1)} dx$$

$$= \int \left(\frac{3}{x} + \frac{-2x}{x^2 + 1}\right) dx$$

$$= 3 \ln|x| - \ln|x^2 + 1| + C = \ln\left|\frac{x^3}{x^2 + 1}\right| + C$$

$$\frac{1}{x^2(1-x)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{1-x}$$

$$Ax(1-x) + B(1-x) + C(x^2) = 1$$

$$x=0 \Rightarrow B=1$$

$$x=1 \Rightarrow C=1$$

$$x = -1 \Rightarrow -2A + 2B + C = 1 \Rightarrow A = 1$$

$$\frac{1}{x^2(1-x)} = \frac{1}{x} + \frac{1}{x^2} + \frac{1}{1-x}$$

$$\int \frac{1}{x^2(1-x)} dx = \int \left(\frac{1}{x} + \frac{1}{x^2} + \frac{1}{1-x}\right) dx$$

$$= \ln|x| - \frac{1}{x} - \ln|1 - x| + C$$

$$=\ln\left|\frac{x}{1-x}\right|-\frac{1}{x}+C$$

$$u = \cos x \Rightarrow \frac{du}{dx} = -\sin x \Rightarrow dx = \frac{du}{-\sin x}$$

$$\int \frac{\sin x}{\cos^2 x - 3\cos x} = \int \frac{\sin x}{u^2 - 3u} \times \frac{du}{-\sin x} = \int \frac{1}{3u - u^2} du$$

$$\frac{1}{3u - u^2} = \frac{1}{u(3 - u)} = \frac{A}{u} + \frac{B}{3 - u}$$

$$\Rightarrow A(3 - u) + Bu = 1$$

$$u = 0 \Rightarrow A = \frac{1}{3}$$

$$u = 3 \Rightarrow B = \frac{1}{3}$$

$$u = 0 \implies A = \frac{1}{3}$$

$$\int \frac{1}{3u - u^2} du = \int \left(\frac{\frac{1}{3}}{u} + \frac{\frac{1}{3}}{3 - u}\right) du = \frac{1}{3} \ln|u| - \frac{1}{3} \ln|3 - u| + C$$
$$= \frac{1}{3} \ln\left|\frac{\cos x}{3 - \cos x}\right| + C$$

$$u = \sqrt{x} \Rightarrow u^2 = x$$
, $dx = 2u du$

$$\int \frac{\sqrt{x}}{x-4} = \int \frac{u}{u^2-4} \times 2u \, du = \int \frac{2u^2}{u^2-4} \, du = \int \left(2 + \frac{8}{u^2-4}\right) \, du$$

$$\frac{8}{u^2 - 4} = \frac{A}{u - 2} + \frac{B}{u + 2}$$

$$\Rightarrow A(u+2) + B(u-2) = 8$$

$$24 u=2 \Rightarrow A=2 u=-2 \Rightarrow B=-2$$

$$\int \frac{\sqrt{x}}{x-4} = \int \left(2 + \frac{2}{u-2} + \frac{-2}{u+2}\right) du$$

$$= 2u + 2\ln|u-2| - 2\ln|u+2| + C$$

$$= 2\sqrt{x} + 2\ln\left|\frac{\sqrt{x}-2}{\sqrt{x}+2}\right| + C$$

$$u = 1 + \tan x \implies dx = \frac{du}{\sec^2 x}$$

$$\int \sec^2 x \, \tan x \, \sqrt{1 + \tan x} \, \, dx = \int \sec^2 x (u - 1) \, \sqrt{u} \, \frac{du}{\sec^2 x}$$

$$=\int \left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right)du$$

$$=\frac{2}{5}u^{\frac{5}{2}}-\frac{2}{3}u^{\frac{3}{2}}+C$$

$$= \frac{2}{5}(1 + \tan x)^{\frac{5}{2}} - \frac{2}{3}(1 + \tan x)^{\frac{3}{2}} + C$$

$$u=4-3x \implies dx=\frac{du}{-3}, x=\frac{4-u}{3}$$

$$\int \frac{x}{\sqrt[3]{4-3x}} dx = \int \frac{\frac{1}{3}(4-u)}{u^{\frac{1}{3}}} \times \frac{du}{-3} = -\frac{1}{9} \int \left(4u^{-\frac{1}{3}} - u^{\frac{2}{3}}\right) du$$

$$= -\frac{1}{9} \left(6u^{\frac{2}{3}} - \frac{3}{5}u^{\frac{5}{3}} \right) + C = -\frac{2}{3}u^{\frac{2}{3}} + \frac{1}{15}u^{\frac{5}{3}} + C$$

$$=-\frac{2}{3}(4-3x)^{\frac{2}{3}}+\frac{1}{15}(4-3x)^{\frac{5}{3}}+C$$

ملاحظة: يمكن حل هذا التكامل بالأجزاء أيضًا

$$u = \ln x \Rightarrow \frac{du}{dx} = \frac{1}{x}$$
, $dx = x du$ National Center

$$\int \frac{(\ln x)^6}{x} dx = \int \frac{xu^6}{x} du = \int u^6 du = \frac{1}{7}u^7 + C = \frac{1}{7}(\ln x)^7 + C$$

$$u = x - 2 \Rightarrow x = u + 2$$
, $dx = du$

$$\int (x+1)^2 \sqrt{x-2} \, dx = \int (u+3)^2 u^{\frac{1}{2}} \, du$$

$$= \int (u^2 + 6u + 9)u^{\frac{1}{2}} du = \int \left(u^{\frac{5}{2}} + 6u^{\frac{3}{2}} + 9u^{\frac{1}{2}}\right) du$$

$$= \frac{2}{7}u^{\frac{7}{2}} + \frac{12}{5}u^{\frac{5}{2}} + 6u^{\frac{3}{2}} + C$$

$$= \frac{2}{7}(x-2)^{\frac{7}{2}} + \frac{12}{5}(x-2)^{\frac{5}{2}} + 6(x-2)^{\frac{3}{2}} + C$$

ملاحظة: يمكن حل هذا التكامل بالأجزاء مرتين

$$\int x \csc^2 x \, dx$$

$$u = x$$

$$dv = \csc^2 x \, dx$$

$$du = dx$$

$$v = -\cot x$$

$$\int x \csc^2 x \, dx = -x \cot x + \int \cot x \, dx = -x \cot x + \int \frac{\cos x}{\sin x} \, dx$$

$$= -x \cot x + \ln|\sin x| + C$$

$$u = x^{2} - 5x$$

$$du = (2x - 5)dx$$

$$v = e^{x}$$

$$\int (x^{2} - 5x)e^{x} dx = (x^{2} - 5x)e^{x} - \int (2x - 5)e^{x} dx$$

$$u = 2x - 5$$

$$dv = e^{x} dx$$

$$du = 2dx$$

$$v = e^{x}$$

$$\int (2x - 5)e^{x} dx = (2x - 5)e^{x} - \int 2e^{x} dx$$

$$= (2x - 5)e^{x} - 2e^{x} + C$$

$$\int (x^{2} - 5x)e^{x} dx = (x^{2} - 5x)e^{x} - (2x - 5)e^{x} + 2e^{x} + C$$

$$= e^{x}(x^{2} - 7x + 7) + C$$

$$u = x$$

$$dv = \sin 2x dx$$

$$du = dx$$

$$v = -\frac{1}{2}\cos 2x$$

$$\int x \sin 2x dx = -\frac{1}{2}x \cos 2x - \int -\frac{1}{2}\cos 2x dx$$

$$= -\frac{1}{2}x \cos 2x + \frac{1}{4}\sin 2x + C$$

$$t = 1 \Rightarrow u = 1$$

$$\int_{0}^{1} t \, 3^{t^{2}} \, dt = \int_{0}^{1} t \, 3^{u} \, \frac{du}{2t} = \frac{1}{2} \int_{0}^{1} 3^{u} \, du = \frac{3^{u}}{2 \ln 3} \Big|_{0}^{1}$$

$$= \frac{3}{3 \ln 3} - \frac{1}{3 \ln 3} = \frac{1}{\ln 3}$$

إن لم تستطع قول الحق فلا تصفق للباطل

 $u=t^2 \Rightarrow dt = \frac{du}{2t}$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cot^3 x \, dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cot x \left(\csc^2 x - 1 \right) \, dx$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cot x \csc^2 x \, dx - \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cot x \, dx$$

$$u = \cot x \implies dx = \frac{du}{-\csc^2 x}$$

$$x=\frac{\pi}{4} \Longrightarrow u=1$$

$$x=\frac{\pi}{3} \Longrightarrow u=\frac{1}{\sqrt{3}}$$

$$\Rightarrow \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cot x \csc^2 x \, dx - \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cot x \, dx = \int_{1}^{\frac{1}{\sqrt{3}}} -u \, du - \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos x}{\sin x} \, dx$$

$$= -\frac{1}{2}u^2\Big|_{1}^{\frac{1}{\sqrt{3}}} - \ln|\sin x|\Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}}$$

$$= -\frac{1}{2} \left(\frac{1}{3} - 1 \right) - \left(\ln \frac{\sqrt{3}}{2} - \ln \frac{\sqrt{2}}{2} \right)$$

$$= \frac{1}{3} - \ln \frac{\sqrt{3}}{\sqrt{2}} = \frac{1}{3} - \frac{1}{2} \ln \frac{3}{2}$$

$$u = 4 + 3\sin x \implies dx = \frac{du}{3\cos x}$$

$$x = -\pi \implies u = 4$$

$$x = \pi \implies u = 4$$

$$\int_{-\pi}^{\pi} \frac{\cos x}{\sqrt{4 + 3\sin x}} dx = \int_{4}^{4} \frac{\cos x}{\sqrt{u}} \times \frac{du}{3\cos x} = \frac{1}{3} \int_{4}^{4} \frac{du}{\sqrt{u}} = 0$$

$$\int_{-1}^{0} \frac{x^2 - x}{x^2 + x - 2} dx = \int_{-1}^{0} \frac{x(x - 1)}{(x - 1)(x + 2)} dx$$

$$= \int_{-1}^{0} \frac{x}{x+2} dx = \int_{-1}^{0} \left(1 - \frac{2}{x+2}\right) dx$$

$$= (x - 2 \ln|x + 2|)|_{-1}^{0} = 0 - 2 \ln 2 - (-1 - 2 \ln 1) = 1 - 2 \ln 2$$

$$\frac{32x^2+4}{16x^2-1}=2+\frac{6}{16x^2-1}=2+\frac{A}{4x-1}+\frac{B}{4x+1}$$

$$\Rightarrow A(4x+1) + B(4x-1) = 6$$

$$x=\frac{1}{4} \implies A=3$$

$$x=-\frac{1}{4} \implies B=-3$$

$$\int_{1}^{2} \frac{32x^{2}+4}{16x^{2}-1} dx = \int_{1}^{2} \left(2+\frac{3}{4x-1}+\frac{-3}{4x+1}\right) dx$$

$$= \left(2x + \frac{3}{4}\ln|4x - 1| - \frac{3}{4}\ln|4x + 1|\right)\Big|_{1}^{2}$$

$$= \left(4 + \frac{3}{4}\ln 7 - \frac{3}{4}\ln 9\right) - \left(2 + \frac{3}{4}\ln 3 - \frac{3}{4}\ln 5\right)$$

$$=2+\frac{3}{4}\ln\frac{35}{27}$$

$$u = \ln 2x$$
 $dv = x dx$

$$du = \frac{1}{r}$$
 $v = \frac{x^2}{2}$

$$\int_{\frac{1}{2}}^{\frac{e}{2}} x \ln 2x \ dx = \frac{x^2}{2} \ln 2x \bigg|_{\frac{1}{2}}^{\frac{e}{2}} - \int_{\frac{1}{2}}^{\frac{e}{2}} \frac{x}{2} \ dx$$

$$= \frac{x^2}{2} \ln 2x \Big|_{\frac{1}{2}}^{\frac{e}{2}} - \frac{1}{4}x^2 \Big|_{\frac{1}{2}}^{\frac{e}{2}} = \frac{1}{16}(e^2 + 1)$$

$$s(10) - s(0) = \int_0^{10} v(t) dt = R_1 - R_2 + R_3$$

$$=\frac{1}{2}(2)(4)-\frac{1}{2}(2)(4)+\frac{1}{2}(3+6)(4)=18 \text{ m}$$

39
$$\int_0^{10} |v(t)| dt = R_1 + R_2 + R_3 = 4 + 4 + 18 = 26 \text{ m}$$

40
$$s(10) - s(0) = 18 \Rightarrow s(10) - 0 = 18 \Rightarrow s(10) = 18 \text{ m}$$

45

$$x^2 = x^{\frac{1}{2}} \implies x^4 = x \implies x^4 - x = 0$$

$$\Rightarrow x(x^3-1)=0 \Rightarrow x=0, \qquad x=1$$

$$A = \int_0^1 (\sqrt{x} - x^2) dx = \left(\frac{2}{3}x^{\frac{3}{2}} - \frac{1}{3}x^3\right)\Big|_0^1 = \left(\frac{2}{3} - \frac{1}{3}\right) - (0) = \frac{1}{3}$$

$$x = x^3 \implies x(x^2 - 1) = 0 \implies x = 0, \quad x = 1, \quad x = -1$$

$$A = \int_{-1}^{0} (x^3 - x) dx + \int_{0}^{1} (x - x^3) dx$$

$$= \left(\frac{1}{4}x^4 - \frac{1}{2}x^2\right)\Big|_{-1}^{0} + \left(\frac{1}{2}x^2 - \frac{1}{4}x^4\right)\Big|_{0}^{1} = \frac{1}{2}$$

$$x^2 + 2 = -x \implies x^2 + x + 2 = 0$$

هذه المعلالة التربيعية لا حلول لها، لأن المميز سالب، إذن، منحنيا الاقترانين لا يتقاطعان.

$$A = \int_{-2}^{2} (x^2 + 2 + x) dx = \left(\frac{1}{3} x^3 + 2x + \frac{1}{2} x^2 \right) \Big|_{-2}^{2} = \frac{40}{3}$$

$$\frac{x^2}{x^2 - 1} = 1 + \frac{1}{x^2 - 1} = 1 + \frac{A}{x - 1} + \frac{B}{x + 1}$$

$$\Rightarrow A(x+1) + B(x-1) = 1$$

$$x=1 \implies A=\frac{1}{2}$$

$$x = -1 \implies B = -\frac{1}{2}$$

$$\int_{2}^{5} \frac{x^{2}}{x^{2} - 1} dx = \int_{2}^{5} \left(1 + \frac{\frac{1}{2}}{x - 1} + \frac{-\frac{1}{2}}{x + 1} \right) dx$$

$$= \left(x + \frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1|\right)\Big|_{2}^{5} = 3 + \frac{1}{2}\ln 2$$

$$D = \int_{1}^{10} v(t)dt = \int_{1}^{10} \left(\frac{1}{9}t - (t+6)^{-\frac{1}{2}}\right)dt$$

$$= \left(\frac{1}{18}t^2 - 2\sqrt{t+6}\right)\Big|_{1}^{10} = \left(2\sqrt{7} - \frac{5}{2}\right)\mathbf{m} \approx 2.792\,\mathbf{m}$$

169	0795604	فيات : د. خالد جلال 0799948198 & ا.اياد العمد 563	طريق التفوق في الريا
111111	50	$\frac{1}{16}x^3 = 2\sqrt{x} \Rightarrow \frac{1}{256}x^6 - 4x = 0$ $\Rightarrow x\left(\frac{1}{256}x^5 - 4\right) = 0 \Rightarrow x = 0,$	
		$x = \sqrt[5]{4(256)}$ $A = \int_0^4 \left(2\sqrt{x} - \frac{1}{16}x^3\right) dx = \left(\frac{4}{3}x^{\frac{3}{2}} - \frac{1}{64}x^4\right)\Big _0^4 = \frac{20}{3}$	$=\sqrt[5]{2^{10}}=4$
11.11117	51	$x^{2} + 14 = x^{4} + 2 \Rightarrow x^{4} - x^{2} - 12 = 0$ $\Rightarrow (x^{2} - 4)(x^{2} + 3) = 0 \Rightarrow x = \pm 2$	to Committee of Centre
		$\Rightarrow A(-2, f(-2)) = (-2, 18)$ $B(2, f(2)) = (2, 18)$	
(TO)	ual Cen	اقعان فوق المحور x ، وأن منحنى f فوق منحنى g في الفترة (-2,2) $V=\pi\int_0^2\left(f^2(x)-g^2(x) ight)dx$	تلاحظ ان منحیي f و g و ا National Cer
	52	$=\pi\int_0^2((x^2+14)^2-(x^4+2)^2)dx$	
W-1	ulio:	$-\pi \int_{0}^{2} (-x^{8} - 2x^{4} + 29x^{2} + 192) dx$	College Harry

$$= \pi \int_0^2 (-x^8 - 3x^4 + 28x^2 + 192) dx$$

$$= \pi \left(-\frac{1}{9}x^9 - \frac{3}{5}x^5 + \frac{28}{3}x^3 + 192x \right) \Big|_0^2 = \frac{17216\pi}{45}$$

$$V = \pi \int_{1}^{2} (f(x))^{2} dx = \pi \int_{1}^{2} x e^{-x} dx$$

$$u = x \qquad dv = e^{-x} dx$$

$$du = dx \qquad v = -e^{-x}$$

$$\int x e^{-x} dx = -x e^{-x} + \int e^{-x} dx = -x e^{-x} - e^{-x} + C$$

$$V = \pi \int_{1}^{2} x e^{-x} dx = \pi \left((-x e^{-x} - e^{-x}) |_{1}^{2} \right) = \frac{2e - 3}{e^{2}} \pi$$

54
$$\frac{dy}{\sqrt{y}} = \frac{dx}{x} \Rightarrow \int \frac{dy}{\sqrt{y}} = \int \frac{dx}{x} \Rightarrow 2\sqrt{y} = \ln|x| + C$$

$$\frac{dy}{\sec y} = xe^x dx \Longrightarrow \int \cos y \ dy = \int xe^x dx$$

$$u = x dv = e^x dx$$

$$du = dx$$
 $v = e^x$

$$\Rightarrow \int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C$$

$$\Rightarrow \int \cos y \ dy = \int x e^x dx$$

$$\Rightarrow$$
 sin $y = xe^x - e^x + C$

$$3y^2dy = 8xdx$$

$$\int 3y^2 dy = \int 8x dx \Longrightarrow y^3 = 4x^2 + C$$

$$xdy = \sqrt{y}(3x+4)dx$$

$$dy \quad 3x+4 \qquad f \quad 1 \qquad f \quad f$$

$$\frac{dy}{\sqrt{y}} = \frac{3x+4}{x}dx \implies \int y^{-\frac{1}{2}}dy = \int \left(3+\frac{4}{x}\right)dx$$
$$\implies 2\sqrt{y} = 3x+4\ln|x|+C$$

$$\frac{dy}{dx} = 8 - 4y = 4(2 - y)$$

$$\frac{dy}{2-y} = 4dx \Rightarrow \int \frac{dy}{2-y} = \int 4dx$$

$$-\ln|4 - y| = 4x + C$$

$$x = 0, y = 3$$
 لإيجاد الحل الخاص نعوض

$$-\ln 1 = 0 + C \Longrightarrow C = 0$$

$$-\ln|4-y|=4x$$

الحل الخاص:

$$\frac{dy}{5e^y} = \frac{dx}{(2x+1)(x-2)}$$

$$\frac{1}{(2x+1)(x-2)} = \frac{A}{2x+1} + \frac{B}{x-2} \implies A(x-2) + B(2x+1) = 1$$

$$x=2 \implies B=\frac{1}{5}$$
 ' $x=-\frac{1}{2} \implies A=-\frac{2}{5}$

$$\int \frac{dy}{5e^y} = \int \left(\frac{-\frac{2}{5}}{2x+1} + \frac{\frac{1}{5}}{x-2} \right) dx$$

$$\frac{-e^{-y}}{5} = -\frac{1}{5}\ln|2x+1| + \frac{1}{5}\ln|x-2| + C$$
 المحل العام

$$x = -3, y = 0$$
لإيجاد الحل الخاص نعوض $x = -3, y = 0$ في الحل العام

$$\frac{-1}{5} = -\frac{1}{5} \ln 5 + \frac{1}{5} \ln 5 + C \implies C = \frac{-1}{5}$$

$$\frac{-e^{-y}}{5} = -\frac{1}{5}\ln|2x+1| + \frac{1}{5}\ln|x-2| - \frac{1}{5}$$

$$\Rightarrow \frac{1-e^{-y}}{5} = \frac{1}{5} \ln \left| \frac{x-2}{2x+1} \right| \Rightarrow 1 - e^{-y} = \ln \left| \frac{x-2}{2x+1} \right|$$

$$\frac{dx}{x} = 0.2 dt \implies \int \frac{dx}{x} = \int 0.2 dt$$

$$\Rightarrow \ln |x| = 0.2t + C \Rightarrow x = e^{0.2t + C} = e^{C}(e^{0.2t}) = Ke^{0.2t}$$

(|x|=xو و يمالحظة أن عدد الأسماك x أكبر من صفر (فيكون e^C

$$x(0) = 300 \implies 300 = Ke^{0.2(0)} \implies K = 300$$

$$x(t) = 300e^{0.2t}$$
 الخاص:

 $x(5) = 300 e^{0.2(5)} = 300e \approx 815$

إذن، عدد الأسماك في البحيرة بعد خمس سنوات هو 815 سمكة تقريبًا.

$$p(x) = \int \frac{-300x}{(9+x^2)^{\frac{3}{2}}} dx$$
 $u = 9+x^2 \implies dx = \frac{du}{2x}$

62
$$\Rightarrow p(u) = \int \frac{-300x}{u^{\frac{3}{2}}} \frac{du}{2x} = \int -150u^{\frac{-3}{2}} du = \frac{300}{\sqrt{u}} + C$$

$$\Rightarrow p(x) = \frac{300}{\sqrt{9+x^2}} + C \cdot p(4) = \frac{300}{5} + C \Rightarrow 75 = 60 + C \Rightarrow C = 15$$
$$\Rightarrow p(x) = 15 + \frac{300}{\sqrt{9+x^2}}$$

أالدالكمد

J6m 621

in single