

في

الرياضيات

للتوجيهي العلمي

التكامل

٠٧٩٥٦٠٤٥٦٣

JY 1/6. J . 1999 51191

فيما يلي (۱۰۰) فقرة من نوع الاختيار من متعدد لكل فقرة (ξ) بدائل ، واحد فقط منها صحيح ، ضع دائرة حول رمز البديل الصحيح :

)
$$\frac{c}{c}$$
 (جتا۲ س – ۲ جتا۲ س) د س یساوي :

$$\gamma$$
 ر $\frac{- + \pi 1}{4}$ دس یساوي : $- \pi 1$ دس یساوي :

۳) اذا کان
$$\int \frac{1}{\sqrt{1}}$$
 جتاع س د س = $\int A$ جاء س + ج فإن قيمة الثابت $\int A$ تساوي :

غ) اذا كان
$$\gamma(m)$$
 ، (m) معكوسين لمشتقة الاقتران (m) فإن $(m) - 7$) (m) تساوي :

$$(\omega)$$
 ω^{α} (ω) ω (ω) ω (ω) ω (ω) ω (ω) ω (ω) ω (ω)

٧) [جاس جتاس دس يساوي :

$$(4) = 7$$
 ، $(4) = 7$ ، $(4) = 7$ ، فإن $(5) = 7$ ، يساوي :

٩) يتحرك جسيم بتسارع
$$= 11$$
 $- 1$ م $/$ $ث$ ، فإذا كانت سرعتها الابتدائية 3 م $/$ ث فإن سرعة الجسيم

طريق التفوق في الرياضيات: د.خالد جلال ٥٧٩٩٩٤٨١٩٨ & ا.اياد الحمد ٥٧٩٥٦٠٤٥٦٣٠

منهاجي منعاجي منعقا منعلة منعقا

ا
$$\frac{\overline{alm}}{\overline{alm}}$$
 دس يساوي:

:
$$\frac{com}{cm} = \frac{com}{cm}$$
 اذا کان $\frac{com}{cm} = \frac{com}{cm}$ جتاس ، $0 \neq 0$ فإن $0 \neq 0$

ال
$$\frac{7}{1 + \pi i 17 m}$$
 دس یساوي:

ا
$$\frac{c\,w}{1- \,
m eil^7} \, w$$
 دس يساوي :

دس یساوي :
$$\frac{\ddot{d}}{\sinh \omega}$$
 دس یساوي :

ا کا
$$\left(\frac{\overline{blow}}{\overline{closephilon}} + \frac{\overline{blow}}{\overline{closephilon}}\right)$$
 دس یساوي:

(۹) قتاس + جب) قاس + ج

۱۷) إذا كان
$$\boldsymbol{o}$$
 ، \boldsymbol{b} ، \boldsymbol{a} ثلاثة اقترانات متصلة بحيث \boldsymbol{b} (س) = \boldsymbol{o} (س) ، \boldsymbol{o} (س) = \boldsymbol{a} (س) فان العبارة الصحيحة فيما يلي \boldsymbol{a} :

۱۸) اذا کان
$$\gamma(m)$$
 ، (m) معکوسین لمشتقة الاقتران (m) فإن $(m-1)$ (m) تساوي :

$$(\omega)$$
 (ω) (ω) (ω)

۱۹) اذا کان $\gamma(m)$ معکوسا لمشتقة الاقتران $\mathfrak{G}(m)$. $\mathfrak{h} : \mathfrak{h} : \mathfrak$

$$+(\omega) \wedge \frac{1}{\beta} (2 + \omega) \wedge (2 +$$

۲۰) اذا کان $\gamma(m)$ معکوسا لمشتقة الاقتران (m)، وکان $\gamma(m)=$ ظتا(m) فإن (m) يساوي:

(۲) اذا کان
$$\int (w) cw = w^7 + 3w - 3$$
 فإن $\hat{\psi}(7)$ تساوي :

(۲۲)
$$\int \frac{1}{m} \log m \quad cm \quad \text{gain} = 2$$

$$(1) \frac{1}{7} (\mathbf{t}_{\underline{\varphi}} \omega)^{7} + \epsilon \qquad \qquad (1) \frac{1}{7} (\mathbf{t}_{\underline{\varphi}} \omega)^{7} + \epsilon$$

$$(\frac{1}{m})^{7} + (\frac{1}{m})^{7} + (\frac{1}{m})^{7$$

دس یساوي:
$$\frac{+1}{4}$$
 دس یساوي:

(۹)
$$- 7$$
 لو | جاس | + ج ب (ب) $- 7$ **لو** | قتاس | + ج

دس یساوي:
$$\frac{m}{\sqrt{m}} \frac{1}{\sqrt{m}}$$
 دس یساوي:

$$+ \frac{\overline{\sqrt{w}}}{\sqrt{w}} + \stackrel{\circ}{\leftarrow} (2) + \frac{\overline{w}}{\overline{w}} + \frac{\overline{w}}{\overline{w}}$$

$$\frac{\xi}{\sqrt{\gamma}} + \sqrt{\gamma} + \sqrt$$

طريق التفوق في الرياضيات : د.خالد جلال ٥٧٩٩٩٤٨١٩٨ & ا.اياد العمد ٥٧٩٥٦٠٤٥٦٣

دس یساوي:
$$\frac{cm}{m}$$
 دس یساوي:

$$=$$
 $+$ $+$ $+$ $+$ $+$ $+$

$$+ + (-1)^{9} - -1 + (-1)^{9} +$$

$$\frac{c}{c}$$
 ، وكانت $\frac{c}{c}$ ، وكانت $\frac{w}{c}$ ، وكانت ما عند $\frac{w}{c}$ ، ما عند $\frac{$

$$17 = 7 \omega + 7 \omega$$
 (2 $0 - = 7 \omega - 7 \omega$ ($0 = 7 \omega + 7 \omega$) ($0 = 7 \omega + 7 \omega$ ($0 = 7 \omega + 7 \omega$) (0

$$\frac{d \operatorname{dim}}{w}$$
 دس یساوي:

يساوي:
$$\frac{1}{\overline{\mathsf{Blm}}(1-\overline{\mathsf{Flm}})}$$
 دس يساوي:

$$+ \frac{1}{1} = \frac{$$

 $^{1/3}$ جتا۲ س (جاس + جتاس) دس یساوي :

$$++^{7}$$
 (جتاس + جاس) (ب ب جا۲ س + جاس) + جا۲ س + جا۲ ص

٣٧) ل ق (ه(س)) ه (س) دس يساوي:

$$+ ((\omega)(\omega)) + + ((\omega)(\omega)) + + ((\omega)(\omega)(\omega))$$

$$(7)$$
 إذا كان $\int \mathcal{G}(w)$ د $w = \pi i^{7} w - 4$ جا $w + 1$ ، كان $\mathcal{G}(\frac{\pi}{2}) = \cot$ ، فإن قيمة الثابت (7) هي: (7)

د.خالد جلال ۷۹۹۹۶۸۱۹۸ & ۱.ایاد العمد ۷۹۹۹۶۸۱۹۸

طريق التفوق في الرياضيات:

منهاجی و کان $\frac{\frac{\pi}{7}}{\pi}$ جتا۲ س می (س) د س $\frac{\pi}{7}$ ، $\frac{\pi}{7}$ جا۲ س می (س) د س $\frac{\pi}{7}$ فإن قیمة می $\frac{\pi}{7}$ تساوي : ب ۲٤ - (ب ۷ (۷ د) ۱۹ ب) ٧ (۱۵) $\int جتا عس (جتا سجاس + جتاس جاس) دس تساوي :$ $+ + \omega = \frac{1}{1} + \omega = \frac{1}{1$ ب) لو ع د) لو ٦ ج) لو ٢ ع این $q = \int_{-\infty}^{3} + 1$ س دس ، ب = $\int_{-\infty}^{3} + 1$ س دس فإن q + + + 1 ب یساوي : $\frac{1}{1}$ - (2 $\frac{\pi}{1}$ (\Rightarrow عه) إذا كان $\int_{0}^{1} (70(m) - 7 + \frac{\pi}{100})$ د m = 17 فإن $\int_{0}^{1} (50(m))$ د $\int_{0}^{1} \pi (50(m))$ ÷) ۱۳ (ب) ٤٤ ٥٥) إذا كان $\int_{0}^{\infty} \nabla (w) cw = -7$ ، $\int_{0}^{\infty} (w) cw = 17$ فإن $\int_{0}^{\infty} (w) cw$ يساوي : 1.- (2 ۱٤ (ب ج) - ٤١ (7) إذا كان $\int_{0}^{1} (7) (m) - 3)$ د (7) + 3 د (7) + 3 د (7) + 3 إذا كان (7) + 3 د (7)ب) ۱۶ د) ۱٦ ج) ۱۲ دس = $\int_{0}^{\infty} (w - 0)$ دس = $\int_{0}^{\infty} (w)$ دس فإن قيمة ج هي: ج) ٤

منهاجي منعة التعليم الهادف اذا کان $\int_{0}^{\infty} (w)$ د $w=\lambda$ فإن $\int_{0}^{\infty} (-w)$ د ω يساوي : ۲) -۷ ج) ٤ ٩٥) إذا كان (w) = 3 - 9 w^7 معكوس المشتقة للاقتران v (w) وكان v (y) = 7 فإن قيمة <math>v هي : $\frac{1}{2}$ - $\frac{1}{2}$ \div ۲۰) إذا كان $\gamma(m) = + m^7 + q^{m}$ معكوس المشتقة للاقتران ω وكان $\omega(1) = 7$ ، $\int_{1}^{1} \omega(m) c c m = 7$ فإن قيمتي كل من على الترتيب هما: ۳-،٤ (ج ۳،٤- (ب ٥،۱ (۹ د) ۲۰،۲ رہ – ۱ رہ – ۱ این این قیمة ω هي : (س + ۱) دس ω فإن قیمة ω هي : ب) ۲ (ب د) ۲ 77) $\int_{0}^{\infty} \left(\circ + \int_{0}^{\infty} \circ cw \right) cw \quad \text{unle } 2 :$ ب) ۱۰ (ج ٠ (٦ ٦٣) إذا كان $\int_{1}^{1} \sqrt{w}$ دس = 1 حيث $\int_{1}^{1} \frac{7w}{\sqrt{w}}$ دس يساوي: ٤ (٤ عه المقدار $\int_{0}^{\infty} (w) cw + \int_{0}^{\infty} (w) - 7$) دس يساوي: ٦٥) إذا كان $\mathfrak{o}(m)$ قابل للتكامل على الفترة [٢،١] وكان $\mathfrak{o}(1) = 1$ ، $\mathfrak{o}(7) = 3$ ، فإن قيمة $\int_{\mathbb{R}^n} \nabla(w) \sqrt{\nabla(w)} cw$ يساوي: 1 2 (2 ÷) γ γ د) لو(ه+١) ۲۲) - ۲ رس^۲ دس یسا*وي* : - ۲ م ٤ - (١ ج) ٤

طريق التفوق في الرياضيات : د.خالد جلال ٧٩٩٩٤٨١٩٨ & ا.ا**ياد الحمد** ٧٩٥٦٠٤٥٦٣٠٠

۱۸) إذا كان
$$\int_{1}^{7} 7$$
 جس $= -7$ حيث ج $\in \mathcal{S}$ فإن مجموعة قيم جهي:

$$\frac{\xi}{1-\frac{\chi}{1-\chi}}$$
 دس یساوي :

$$(Y)$$
 $\frac{7w+9}{w+7}$ دس یساوي :

: حل المعادلة التفاضلية
$$\pi$$
 د m + د m = جتاس د m هو

$$(75)$$
 إذا كان $(7m+7)$ لوس د $m=0$ $=0$ $=0$ د ∞ فإن ∞ يساوي :

$$(77)$$
 إذا كان $\int_{-1}^{1} \int_{0}^{1} \int_{0}^{$

د.خالد جلال ۱۹۸۸۹۸۹۹۸ & ا.ایاد الحمد ۲۵۰۲۰۶۰۹۰

طريق التفوق في الرياضيات :

$$\pi$$
 (۷۷) $\frac{\pi}{\pi}$ $\frac{\pi}{m^7 + \epsilon l m}$ دس یساوي:

$$\star$$
 (\rightarrow π τ (\rightarrow π (\uparrow

دس یساوي:
$$\begin{bmatrix} \mathbf{Y} \\ \mathbf{A} \\ \end{bmatrix}$$
 إذا استخدمنا التعویض $\mathbf{w} = \mathbf{Y}$ فإن $\begin{bmatrix} \mathbf{A} \\ \mathbf{w} \\ \end{bmatrix}$

()
$$\int_{-\infty}^{\infty} \frac{1}{2} c\omega$$
 $(-\infty)$ $\int_{-\infty}^{\infty} \frac{1}{2} c\omega$ $(-\infty)$ $(-\infty)$ $(-\infty)$ $(-\infty)$ $(-\infty)$

$$(^{ Y9})$$
 إذا كان ميل منحنى $^{ 0}$ عند أي نقطة عليه هو $^{ 1}$ وكان المنحنى يمر بالنقطة $^{ (8^{ Y} + 7) }$

$$\frac{\overline{\psi}}{\xi} = (1)$$
 اذا کان ل (س) معکوس المشتقة للاقتران ψ (س) $= \frac{1}{\psi}$ ، ψ (۱) $= \frac{1}{\xi}$ ، ψ (۱) $= \frac{1}{\xi}$

فإن
$$\int_{1}^{1} \frac{1+1}{m^{2}} \frac{1+1}{2-m^{2}}$$
 دس يساوي:

$$\frac{\overline{r} \sqrt{r}}{\xi} \left(2 \right) \qquad \frac{\overline{r} \sqrt{r}}{\xi}$$

(۱) إذا كان
$$\mathcal{O}(\omega) = \frac{\gamma_{\omega}}{\mathcal{O}(\omega)}$$
 ، $\mathcal{O}(\omega) \neq 0$ ، $\mathcal{O}(\omega) = \gamma_{\omega}$ فإن $\mathcal{O}(\omega) = \gamma_{\omega}$ نساوي :

$$[\frac{\pi}{2}, \cdot] \rightarrow 0$$
 ، $\frac{1+2}{2} = (w)$ وذا كان $\gamma(w) = \frac{b+1}{2}$ ، $w \in [\cdot, \frac{\pi}{2}]$ ، $w \in [\cdot, \frac{\pi}{2}]$ ، $w \in [\cdot, \frac{\pi}{2}]$

رس یساوي:
$$\mathbf{l} = \mathbf{l} = \frac{w^{7}}{w^{7} + \text{dim}}$$
 دس فإن $\mathbf{l} = \frac{\text{dim}}{w^{7} + \text{dim}}$ دس یساوي:

$$(4) \quad w \in (w) + c \qquad (4) \quad + c \qquad (5) \quad + c \qquad (6) \quad + c \qquad (7) \quad + c \qquad (7) \quad + c \qquad (8) \quad +$$

$$(2) \frac{\omega'}{(\omega)} + \frac{1}{\varepsilon}$$

اذا کان
$$\int \frac{\upsilon(m)}{\sin^{2}m}$$
 د $\int \frac{1}{m} = \frac{1}{m}$ قا $\int m + \infty$ فإن $\int \frac{1}{\upsilon(m)}$ د $\int \frac{1}{\upsilon(m)}$ د الدا کان $\int \frac{1}{m} = \frac{1}{m}$

دس یساوي:
$$(m)$$
 معکوسا لمشتقة الاقتران (m) فإن (m) دس یساوي: (n)

طريق التفوق في الرياضيات: د.خالد جلال ٥٧٩٩٤٨١٩٨ & ا.اياد العمد ٥٧٩٥٦٠٤٥٦٣

$$(4.5)$$
 إذا كان $\int_{1}^{2} (\mathbf{v}(w) cw) = \int_{2}^{2} \mathbf{v}(w) cw + \int_{1}^{2} \mathbf{v}(w) cw$ يساوي: (A7) إذا كان $\int_{1}^{2} \mathbf{v}(w) cw$ يساوي: (A7) إذا كان $\int_{1}^{2} \mathbf{v}(w) cw$ يساوي: (A7) إذا كان $\int_{1}^{2} \mathbf{v}(w) cw$ يساوي: (A7)

(س) ≤ -7 لكل $m \in [7, 7]$ فإن أكبر و أصغر قيمة للمقدار $\int_{1}^{7} |0+v(m)| \, dm$ ادس على الترتيب هما:

۸۸) مساحة المنطقة المحددة بالمنحنى $ص = m^{T}$ والمسقيمين m = 0 ، m = 0 تساوي :

٩٠) مساحة المنطقة المحصورة بين المنحنيين $ص = w^3 + 1$ ، $ص = 7 m^7$ تساوي :

$$\frac{17}{10} \left(2 \qquad \frac{\Lambda}{\pi} \right) \Leftrightarrow \frac{17}{10} \left(-\frac{1}{10}\right)$$

(٩١) مساحة المنطقة المحصورة بين المنحنيات $ص = \cdot \cdot \cdot ص = \Lambda - \Upsilon m$ ، $\boldsymbol{v}(m) = m^\Upsilon$ تساوي:

$$\frac{\lambda}{\lambda} (2) \qquad \dot{\xi} (\dot{\varphi}) \qquad \frac{\lambda}{\lambda} (\dot{\varphi}) \qquad \dot{\chi} (\dot{\varphi})$$

وحدة $\sqrt{\frac{1}{P}}$ إذا كانت المساحة المحصورة بين منحنيي $\mathcal{O}(m) = \sqrt{\frac{1}{P}}$ ، $\mathcal{A}(m) = \frac{1}{P}$ س^۲ تساوي ۱۲ وحدة

مساحة حيث ٩ > ٠ فإن قيمة ٩ تساوي :

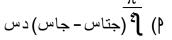
٩٣) التكامل المحدود الذي يعبر عن مساحة المنطقة المظللة هو:

$$U(m) = m$$

$$A_{m} = (m) = \gamma$$

$$\frac{1}{m} = (m)$$

$$\frac{1}{m} = m$$


 $(7) \int_{1}^{7} (7 - w) cw + \int_{1}^{7} (7 - w) cw$ (7 - w) cw (7 - w) cw

د.خالد جلال ۷۹۹۹٤۸۱۹۸ & اایاد العمد ۷۹۵۳۰۶۵۳۳

طريق التفوق في الرياضيات :

٩٤) التكامل المحدود الذي يعبر عن مساحة المنطقة المظللة هو:

$$\frac{\pi}{\gamma},$$

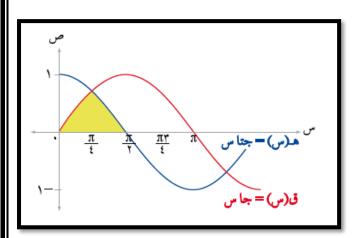
$$(-1)^{\frac{\pi}{2}}$$

$$\frac{\pi}{\xi}$$

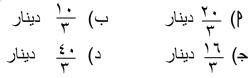
$$\frac{\pi}{\xi}$$

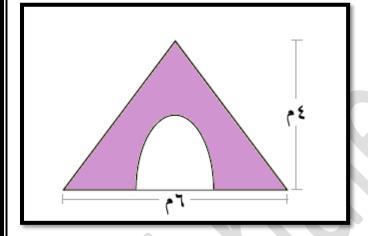
$$(-1)^{\frac{\pi}{2}}$$

$$\frac{\pi}{\xi}$$

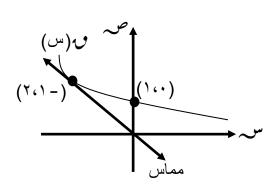

$$(-1)^{\frac{\pi}{2}}$$

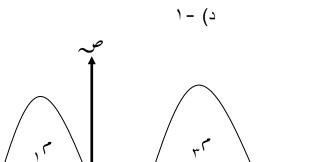
$$\frac{\pi}{\xi}$$


$$(-1)^{\frac{\pi}{2}}$$


$$(-1)^{\frac{\pi}{2}}$$

$$(-1)^{\frac{\pi}{2}}$$

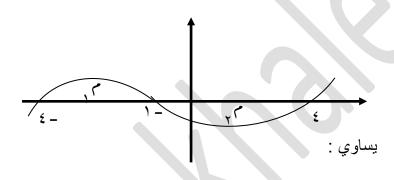

٩٥) الشكل المجاور يمثل الواجهة الامامية لاحد المباني ، مدخل هذا المبنى على $\frac{1}{2}$ شکل منحنی الاقتران $\mathcal{O}(m) = 1 - \frac{1}{2}$ س اذا أن سعر دهان الوحدة المربعة نصف دينار فإن التكلفة الكلية لدهان المنطقة المظللة هي :



٩٦) الشكل المجاور يمثل العلاقة بين السرعة والزمن لجسم يتحرك على خط مستقيم. فإن المسافة المقطوعة في الفترة الزمنية [۷،۰] هي :

ب) ۱۵۰ متر 🔾 ۱۲۰ متر ۹) ۱۲۰ متر

۹۷) الشكل المجاور يمثل منحنى الاقتران ﴿ س) رسم مماس له عند النقطة (١٠١) فإن **أ** س **ن** (س) دس يساوي:


ب) ۱

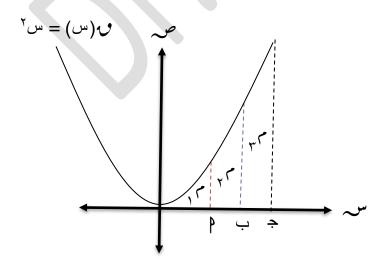
٣ (١

٩٨) في الشكل المجاور اذا كان: $\int_{\Lambda} \mathcal{O}(\omega) c \omega = \Lambda \int_{\Lambda} \mathcal{O}(\omega) c \omega$ وكان م ٢٠ + ٢٢ + ٢٣ = ٣٠ وحدة مربعة

ج) ٤

فإن م، تساوي: ب) ۱ ج) ٤ ٣ (١

۲ (۵


٩٩) اذا كان الشكل المجاوريمثل منحنى

الاقتران ف(س) وكانت م، ، م، عددان موجبان يمثلان المنطقتين المظللتين

فإن
$$\int_{-2}^{2} \mathbf{v}(w) cw - 7 \int_{-2}^{2} \mathbf{v}(w) cw$$
 يساوي :

١٠٠) في الشكل المجاور اذا كان:

- ر × = ^۲ د ۲۱۹ = _۴۲ $\frac{+++}{4}$ يساوي :
- ٩) ٣ ب ، ٠ ج) ٤ د) ٦