

الماد في سالا الياشيات

الاستاذ حمزة ابو الفول T. POPOTTVV.

الملاذ في مهارات الرياضيات وحدة التكامل تدريبات مع الحل

مثان: جد اقتر اناً بدائيًا للاقتر ان ق الذي قاعدته ق (س) = ع س + قا س

الحل: م (س) = سع + ظاس + ه

المحل:
$$\int d = \int d = \int (\sin^{7} m - 1) c m$$

$$= - d = m - m + - m$$

$$(\frac{\pi}{\xi})$$
 فجد ق (س) دس = جا 7 کس + ظا س + جو فجد ق ($\frac{\pi}{\xi}$) مثال: إذا کان \int

ق (س)
$$= \Lambda$$
 جتا کی $+$ ۲ قاس \times قاس ظاس $=$ Λ جتا کی $+$ ۲ قا 7 س ظاس $=$ Λ

الممثلة عن 6 يعو الله الماليول 0172259503

$$\frac{\pi}{\xi}$$
 گ $\frac{\pi}{\xi}$ الله $\chi + \pi$ ته $\chi = (\frac{\pi}{\xi})$ څ $\chi = (\frac{\pi}{\xi})$ څ $\chi = (\frac{\pi}{\xi})$ خال $\chi = (\frac{\pi}$

الاستاذ حمزة ابو الفول T. POPOTYVV.

الملاذ في مهارات الرياضيات وحدة التكامل تدريبات مع الحل

$$1 + {}^{7}$$
س اذا کان $\int_{0}^{1} (\bar{b})(w) + {}^{7}(w) = w^{3} + 1$ مثال: إذا کان $\int_{0}^{1} (\bar{b})(w) + {}^{7}(w) = w^{3} + 1$

$$(\xi)$$
 ق $(1) = 0$ ، ق $(Y) = (Y)$ ، جد: قیمة أ ، ق (1) ق (ξ)

الحل: (س)
$$+ 7$$
 س $= 7$ س $+ 7$ أس (باشتقاق الطرفين)

ق (۱) = 0 $+ 7 = 7 + 7$ أ

$$1 + ^{7}$$
ق (س) + س $^{7} + = - ^{7} + ^{1}$ س $^{7} + ^{1}$

ق (س) + س^۲ +
$$\Lambda$$
 = س^۳ + Υ س + Λ = ق (س) = M ق (س) = M ق (۰) = M

$$7 = (\xi) + (\xi) = \pi$$
 قَ $\xi = \pi$ قَ رَا $\xi = \pi$ قَ رَا $\xi = \pi$ قَ رَا $\xi = \pi$ قَ رَا وَا اللّٰهِ عَلَى اللّٰهِ عَلْمَا عَلَى اللّٰهِ عَلَ

$$=\frac{1}{2}$$
 $+$ $+$ $=$

$$= \sqrt{\frac{\frac{\tau}{\pi}}{m}} cm = \frac{\tau}{\tau} m^{\frac{1}{\pi}} + =$$

$$= \int_{W} \sqrt{W} cw = \int_{W} \sqrt{W} cw = \frac{V}{V} \sqrt{V} + e$$

مثان: جد
$$\int (3 m^7 - 7m + 7) cm = m^3 - m^7 + 7m + ج$$

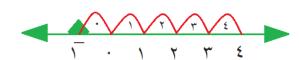
المشكلة عنوة أبع النول 0**112259503**

لاستاذ حمزة ابو الفول 0772259503 مثان: اذا کانت $\int_{1+1}^{1+1} c \, dx$ دس = . ٤ . فجد قیمهٔ أ

 $\xi \cdot = [(i+1)-(i+7)] \circ \quad \qquad \qquad \xi \cdot = 0$

 $\frac{\forall}{\Upsilon} = \emptyset \qquad \xi \cdot = (1 + \emptyset \Upsilon) \circ$

مثال: اذا کان \int_{1}^{1} ق(س) - ۲س)دس = ۲۰ ، فجد \int_{1}^{1} ق(س) دس


 $Y_{-} = \sum_{j=1}^{7} (\bar{g}(w) - Y_{-})$ کس دس $\bar{g}(w)$ دس $\bar{g}(w)$ دس $\bar{g}(w)$ دس $\bar{g}(w)$

۲۰= ٤ - سا آ = ۲۰ کا ق (س) دس - سا آ = ۲۰ کا ق (س) دس - ٤ = ۲۰

) قرس دس = ۲۲ ا

المطلوب \int_{0}^{1} γ ق (س) $\gamma = \gamma$ ق (س) د س $\gamma = \gamma \times \gamma = \gamma$ المطلوب

مثال: جد رأس + ۱] دس

الحل: نعيد تعريف اقتران اكبر عدد صحيح

الإسكاد المنطقة المنط

$$\int_{1}^{3} \left[w + 1 \right] cw = \int_{1}^{7} 7. cw + \int_{7}^{7} 7. cw + \int_{7}^{3} 3. cw$$

مثان: اذا کان
$$\int_{\gamma}^{z}$$
 ق (س) دس $=-7$ ، \int_{γ}^{z} ق (س) دس $= 71$ ، جد \int_{γ}^{z} ق (س) دس $=-7$ الحل: من المعطیات \int_{γ}^{z} ق (س) دس $=-7$ آق (س) دس $=-7$

الملاذ في مهارات الرياضيات

وحدة التكامـــل

تدريبات مع الحل

المطلوب
$$\int_{V}^{2} \bar{b} (w) cw = \int_{V}^{2} \bar{b} (w) cw + \int_{V}^{2} \bar{b} (w) cw = \int_{V}^{2} \bar{b} (w)$$

مثان: اذا کان $\int_{-\infty}^{\infty}$ س دس = ، فجد قیمة ج.

$$1 \pm 0 = 0$$
 دس = $0 + 0$ دس = $0 + 0$ المحل : $\int_{1-1}^{\infty} \sqrt{\frac{w^{2}}{1}} = 0$ دس = $0 + 0$ دس

مثال: اذا کان
$$\int_{1}^{7} \tilde{\mathbf{o}}(\mathbf{w}) \, \mathbf{c} \mathbf{w} = \mathbf{o}$$
 ، $\int_{1}^{8} \tilde{\mathbf{o}}(\mathbf{w}) \, \mathbf{c} \mathbf{w} = \mathbf{g}$ ، فجد $\int_{1}^{8} \tilde{\mathbf{o}}(\mathbf{w}) \, \mathbf{c} \mathbf{w}$

$$0 - = 0$$
 المطلوب $\int_{\gamma}^{\gamma} \tilde{g}(w) cw = 0$ المطلوب $\int_{\gamma}^{\gamma} \tilde{g}(w) cw = 0$ المطلوب $\int_{\gamma}^{\gamma} \tilde{g}(w) cw = 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$

الملاذ في مهارات الرياضيات

وحدة التكامل تدريبات مع الحل توجيهى علمي

الاستاذ حمزة ابو الفول * POPOTYVV.

$$\frac{co}{m} = m^{n} - m$$
 افرض ص $= m^{n} - m$ دص $= 7$ س دس

$$\int_{1}^{1} \int_{1}^{1} \int_{1$$

$$\frac{color + 7}{14}$$
 افرض ص = m^2 + m^2 ص m^2 دص m^3 دس m^3 دس m^3 دس m^3

$$\int w^{0} \sqrt{w^{n} + Y} cw = \int w^{0} \sqrt{w} \sqrt{w} \sqrt{w}$$

$$=rac{1}{\pi}\int_{0}^{\pi}\sqrt{m}$$
 دص $=rac{1}{\pi}\int_{0}^{\pi}(m-1)\sqrt{m}$ دص

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} (-\pi) \sqrt{\frac{1}{m}} =$$

$$=\frac{1}{\pi}\left((\omega-7)\sqrt{\omega}\right)$$

$$=\frac{1}{\pi}\left((\omega-7)(\omega)\right)$$

$$= \frac{1}{\pi} \int (\frac{\sqrt{r}}{r} - 7 \frac{\sqrt{r}}{r}) \cos \theta$$

$$=\frac{1}{\pi}\left[\frac{\frac{7}{7}}{2}\omega^{\frac{2}{7}}-\frac{\frac{2}{7}}{2}\omega^{\frac{7}{7}}\right]+\frac{1}{\pi}$$

$$=\frac{\frac{\pi}{7}}{\left[\frac{\pi}{7}(7+7)^{\frac{2}{7}}-\frac{\xi}{7}(7+7)^{\frac{2}{7}}\right]}+$$

لاستاذ حمزة ابو الفوا 0772259503

النسكان محمورة المواليول 0772259503

الاستاذ حمزة ابو الفول . VVYYDQDQ.W

الملاذ في مهارات الرياضيات وحدة التكامل

تدريبات مع الحل

المحل: (افرض ص = أس + ۱)
$$-$$
 دص = أدس $-$ دس $-$ دس $-$

$$\frac{1}{\delta} \left(\frac{1}{\delta} w + 1 \right) cw = \int d^{7}(w) \frac{cw}{\delta}$$

$$= \frac{1}{\delta} \int d^{7}(w) cw$$

$$= \frac{1}{\delta} d^{7}(w) cw$$

$$= \frac{1}{\delta} d^{7}(w) cw$$

$$= \frac{1}{\delta} d^{7}(w) cw$$

$$= \frac{1}{\delta} d^{7}(w) cw$$

$$\frac{column{2}{c}}{11}$$
 افرض ص $1 = 1 - 1$ س و حرے $1 - 1$ دس افرض ح

لاستاذ حمزة ابو الفول 0772259503

$$\int \frac{1}{Y} = \omega \times \omega$$
 (س۲ - ۲ س) دس $= \frac{1}{Y}$ جتا ص دس $= \frac{1}{Y}$ جا ص $= \frac{1}{Y}$ جا ص $= \frac{1}{Y}$ جا ص $= \frac{1}{Y}$ جا ص $= \frac{1}{Y}$ جا $= \frac{1}{Y}$ جا $= \frac{1}{Y}$ جا $= \frac{1}{Y}$ جا $= \frac{1}{Y}$ جبر نامه المنافق المنافق

نطبیق قانون
$$\frac{1}{1}$$
 جا ۲س جا٤س دس $\frac{1}{1}$ (جتا۲س – جا ۱۰س) دس

$$=\frac{1}{Y}$$
 = $\frac{1}{Y}$ = $\frac{1}{Y}$ = $\frac{1}{Y}$

المشكلة محمورة المولية المولي

الاستاذ حمزة ابو الفول ٣. ٩ ٥ ٩ ٥ ٢ ٧٧ ٢.

الملاذ في مهارات الرياضيات وحدة التكامل تدريبات مع الحل

المحل :
$$\frac{1}{V}$$
 جتا ۲س جتا۷س دس $\frac{1}{V}$ (جتا ۱۰س + جتا ۶س) دس

$$=\frac{1}{\gamma}\left[\frac{1}{\gamma}+1$$

مثال: جد ر جتا ً س دس

رو الفول ال

الحل:
$$\int جتا ^3 س دس = \int (جتا ^7 س)^7 دس$$

$$=\frac{1}{3}\int_{-\infty}^{\infty}\int_{-\infty$$

$$=\frac{1}{2}\int \frac{1}{2}(1+\pi i \pm i \pm i) \quad (7 + \pi i \pm i) \quad (7 + \pi i \pm i) \quad (7 + \pi i \pm i) \quad (9 + \pi i \pm i) \quad (1 + \pi i) \quad (1 + \pi i \pm i)$$

$$+ \left[w + \frac{1}{2} + w \right] + \left$$

مثال: جد ﴿ ظاء س قا ا دس

الحل: افرض ص = ظاس و د ص = قا اس دس

الممثلاً عنو أنه المعلق الم المعلق المعلق

ر ظائس قا س دس =
$$\int ص دص$$
 دص = $\frac{ص \circ}{\circ} + =$ = $\frac{ظا \circ m}{\circ} =$

الاستاذ حمزة ابو الفول W. POPOTYVV.

الملاذ في مهارات الرياضيات وحدة التكامل تدريبات مع الحل

الحل : افرض ص
$$-1-7$$
 س ۲ حص $--3$ س دس $+-5$ دص $--3$ افرض ص

$$=\frac{1}{\xi}$$
 قاص $+$ ج

$$=\frac{1}{\xi}$$
 قا (۱ – ۲ س^۲) + جـ

مثان: جد
$$\int_{1}^{\frac{\pi}{7}} \frac{1}{\sqrt{1+r^{1}}} dr$$
 دس

المحل: افرض
$$ص = 1 + جا^{7}$$
س جتاس دس $+ 7 + جا^{7}$ دص $+ 7 + جا^{7}$ دص $+ 7 + جا^{7}$ دص

$$abla=0$$
 $abla=0$ ab

$$\frac{1}{\sqrt{1 + \frac{\pi}{2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{1 + \frac{\pi}{2}}} cm = \int_{-\infty}^{\infty} \frac{1}{\sqrt{1 + \frac{\pi}{2}}} \int$$

$$- \int_{\gamma}^{\gamma} \int_{\gamma}^{\gamma} \int_{\gamma}^{\gamma} =$$

$$(1-\frac{1}{7})^{\frac{1}{7}}=\frac{1}{7}\frac{1}{7}$$

$$| \frac{1}{1} \sum_{k=1}^{\infty} \frac{$$

أكمل الحل

$$=\frac{\pi}{\Lambda}$$
 (۱ – ۱) = صفر

الاستاذ حمزة ابو الفول ٣. ٩ ٥ ٩ ٥ ٩ ٢ ٧٧ ٢ .

الملاذ في مهارات الرياضيات وحدة التكامل تدريبات مع الحل

مثال: جد
$$\int (7m-1)$$
 جتا $7m$ دس

بالاجزاء

$$\int \frac{1}{m} - \frac{m^m}{m} \times 7$$
دس دس $= (7m - 1) \times \frac{m^m}{m} - \frac{1}{m} = \frac{1}{m} \times 7$ دس دس $= \frac{1}{m} \times \frac{1}$

مثال: جد $\int (m-1)^7$ جتا (m+1) دس

الحل:

0772259503

$$(m-1)^{2}$$
 د هـ = جتا $(m+1)$ د س افرض ق = $(m-1)$ د س حرک هـ = جا $(m+1)$

$$(m-1)^{7}$$
 جتا $(m+1)$ دس $= (m-1)^{7}$ جا $(m+1)$ دس $= (m-1)^{7}$ جا $(m+1)$ دس

بالاجزاء مرة ثانية

$$= (m-7)^{7} + (m+1) - 7 [(7-m) \times -\pi 1 (m+1) + (m+1)$$

$$= (m-1)^{7}$$
 جا $(m+1)+(1+m)+(1+m)+(1+m)+(1+m)$

الاستاذ حمزة ابو الفول ٣. ٩٥ ٩٥ ٢ ٧٧ ٢. الملاذ في مهارات الرياضيات وحدة التكامـــل تدريبات مع الحــل

توجيهي علمي

إذن
$$\int$$
 جتا \int حس د \int حس د \int جتا \int حتا \int جتا \int حتا \int المحتا \int المحتا \int ختا \int ختا

$$+$$
 جتا $\frac{7}{9}$ جتا $\frac{7}{9}$ جتا $\frac{7}{9}$ جتا $\frac{7}{9}$ جتا $\frac{7}{9}$

= $\left| \int o \times + \pi i \right| =$

بالاجزاء

الاستان حمزة العوال 12259503 0772259503

توجيهي علمي

الاستاذ حمزة ابو الفول ۳، ۹ه ۹ه ۲۷۷۲،

الملاذ في مهارات الرياضيات وحدة التكامـــل تدريبات مع الحــل

$$\cdot < \infty$$
 ، س $\cdot < \infty$ ، ص $\cdot < \infty$ ، مثال : حل المعادلة التفاضلية $\frac{com}{com} = \frac{1}{m}$

الحل:
$$\frac{co}{cw} = \sqrt{\frac{w}{w}} = \frac{co}{cw} = \sqrt{\frac{w}{w}}$$
 دس دص = \sqrt{w} دس دص = \sqrt{w}

$$\frac{co}{\sqrt{-\omega}} = \frac{cw}{\sqrt{-\omega}} = \sqrt{\frac{cw}{\sqrt{-\omega}}} = \sqrt{\frac{cw}{\sqrt{-\omega}}}$$

$$T = \frac{1}{7} = T$$
 $T = \frac{1}{7}$ $T = \frac{1}{7}$ $T = \frac{1}{7}$

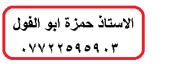
مثال: قذف جسم رأسيا لأعلى بسرعة ٤٠م/ث وبتسارع مقداره -١٠م/ث، اذا كان ارتفاعة عن سطح الارض بعد ثانية من حركته يساوي ٨٠م، فجد أقصى ارتفاع يصل اليه الجسم.

مهارات الريخيزي 0772259503 دوين مهارات الايکنورزة عوالد/مها

$$c = \frac{c}{c}$$
 ت = - ، ۱ دن $c = \frac{c}{c}$

$$\int c g = \int - \cdot \cdot \cdot c i$$

الاستان معرزة ابو الفول 0772259503


$$\frac{c\dot{\omega}}{c\dot{\upsilon}} = -. \, \dot{\upsilon} + \dot{\upsilon} = -. \, \dot{\upsilon} + \dot{\upsilon} = -. \, \dot{\upsilon} = -. \, \dot{\upsilon} = -. \, \dot{\upsilon} + \dot{\upsilon} = -. \, \dot{\upsilon} = -$$

$$1 \div 0 = -00^{7} + 0 \div 0 + 0 \div 0$$

وعليه فإن أقصى ارتفاع هو ف
$$(3) = -0(3)^7 + .3 \times 3 + 0$$
و عليه فإن أقصى ارتفاع هو ف $-0.7.4 + 0.3 = 0.7.4$ م

توجيهي علمي

الملاذ في مهارات الرياضيات وحدة التكامــل تدريبات مع الحــل

مثال : جد مساحة المنطقة المحصورة بين منحنى ق(m) = Y - Y m ومحور السينات والمستقيمين m = Y - Y m ، m = Y - Y m

 $= 7 - (1 - \xi) + (\xi - 1) - 7 =$ وحدات مساحة

مثال : جد مساحة المنطقة المحصورة بين منحنى ق(س) = ١٦ - س ومحور السينات و المستقيمين m = 1 ، m = 1 .

لا نجزئ التكامل لأن أصفار الاقتران ليست ضمن الفترة

$$\frac{\xi = \omega}{\xi = \omega} = 0$$

$$\omega = \frac{\xi}{2}$$

$$\frac{1}{1} \frac{1}{1} = \frac{1}{1} (71 - m^{2}) cm = 71 (7 - 1) - \frac{m^{2}}{1}$$

$$= 71 (7) - (\frac{m^{2}}{1} - \frac{m^{2}}{1})$$

$$= 77 - (7) - (\frac{m^{2}}{1} - \frac{m^{2}}{1})$$

$$= 77 - (7) - (7) - (1)$$

$$= \frac{1}{m} 77 e^{-2} c c c c c$$

$$= \frac{1}{m} 77 e^{-2} c c c c$$

مثال : جد مساحة المنطقة المحصورة بين منحنى ق $(m) = |m^{2} - 1|$ ومحور السينات في الفترة [-7, 7]

$$|\frac{1}{2}| = \frac{1}{2} | w^{2} - \frac{1}{2} | w^{2}$$

مثال : جد مساحة المنطقة المحصورة بين منحنى ق $(m) = m^{\dagger}$ ، ومنحنى b(m) = a + a + a

الحل: نجد نقط تقاطع المنحنيين

$$^{\circ}$$
 $^{\circ}$ $^{\circ}$

$$= \int_{-1}^{\infty} [3m + 6 - m^{2}) cm = [7m^{2} + 6m - \frac{m^{2}}{7}]^{\circ}$$

$$\left[\sqrt[r]{\frac{r}{r}} - (\sqrt{r}) \circ + \sqrt[r]{(r)} \gamma \right] - \left[\sqrt[r]{\frac{r}{r}} - (0) \circ + \sqrt[r]{(0)} \gamma \right] =$$

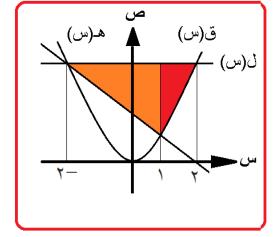
٣٦ و حده مساحة.

مثال : جد مساحة المنطقة المحصورة بين منحنيات الاقترانات ق (س) = س ، هـ (س) = τ - س ، τ (س) = τ .

الحل: نجد نقط التقاطع بين المنحنيات

$$(m) = (m)$$
 $(m) = (m)$

$$\omega^{\mathsf{Y}} = \mathsf{Y} - \omega$$


$$\mathsf{Y} \cdot \mathsf{Y} - \mathsf{Y} = \mathsf{Y} - \mathsf{Y} - \mathsf{Y} - \mathsf{Y} + \mathsf{Y} - \mathsf{Y} -$$

وعند تمثيل المنحنيات الثلاث نجد أن المساحة المطلوبة (م) تساوي

$$\gamma = \int_{-1}^{1} \left[U(m) - a_{-}(m) \right] cm + \int_{1}^{1} \left[U(m) - \bar{u}(m) \right] cm \\
= \int_{-1}^{1} (3 - 7 + m) cm + \int_{1}^{1} (3 - m^{2}) cm$$

تابع الحل لتصل الي

م =
$$\frac{1}{7}$$
 ع + $\frac{1}{7}$ = $\frac{1}{7}$ وحدة مساحة

الملاذ في مهارات الرياضيات

وحدة التكامــل تدريبات مع الحــل

To remove this manufacture of

توجيهي علمي

الاستاذ حمزة ابو الفول

مثال : اذا کان ق(س) = لو
$$\frac{w}{r}$$
 ، جد ق(س)

$$\frac{1}{m} = \frac{\frac{1}{Y}}{\frac{1}{Y}} = (m) = \frac{1}{m}$$

$$(w) = \log(w) = \log(w^{n} + 1)$$
 ، $w > -1$ ، جد (w)

$$\frac{\gamma_m}{1+\sigma} = (\omega) = \frac{1}{1+\sigma}$$

الإسلام الأول الموالي الموالي

ق (س) =
$$\frac{\Upsilon}{-\pi}$$
 ظتا س قر (س) = $\frac{\Upsilon}{-\pi}$

مثال: جد
$$\int_{1}^{\pi} \frac{7m}{7m^{7}-6}$$
 دس.

$$\frac{1}{140}: \int_{-\infty}^{\infty} \frac{7w}{9w^{7}-9} = \log_{a} |9w^{7}-9| \int_{-\infty}^{\infty} = \log_{a}^{\infty} \frac{7}{9} = \log_{a}^{\infty} \frac{1}{9} = \log_{a}^{\infty} \frac{1}$$

$$\frac{co}{(7-7)} = co$$
 دس $cov = \frac{cov}{(7-7)} = cov$ دس $cov = \frac{cov}{(7-7)}$

إذن
$$\int \frac{m_{0}^{2}-\gamma}{m_{0}^{2}-\gamma} = \int \frac{c_{0}}{c_{0}} = \int \frac{c_{0}}{c_{0}} = \int c_{0} = \int c_{0} + c_{0}$$

$$= \int c_{0} = \int c_{0}$$

الملاذ في مهارات الرياضيات الاستاذ حمزة ابو الفول وحدة التكامـــل . VVYYDQDQ.W تدريبات مع الحل

$$\frac{1}{a^{2}}$$
 دس $\frac{1}{a^{2}}$ دس

$$\frac{1}{100} : \int_{\gamma}^{2} \frac{1}{p - \gamma w} cw = \frac{-1}{\gamma} \int_{\gamma}^{2} \frac{-\gamma cw}{p - \gamma w}$$

$$\frac{\frac{U}{V} - q}{V} \sqrt{\frac{V}{V}} = \frac{1}{V}$$

$$= \frac{V}{V} + \frac{V}{V} = \frac{V}{V} + \frac$$

مثال: جد ال قائس لو ظاس دس

الحل:

إذن
$$\int$$
 قائس لومطاس دس \int قائس لوم \int قائس لوم وص الحن \int قائس لوم دص إذن \int

افرض ق = لو_ه ص دم = (
$$\phi^{7} + 1$$
) دص
د ق = $\frac{1}{\phi}$ د ϕ د ϕ = $\frac{1}{\phi}$ + ϕ

إذن
$$\int [1]^3 m \, \log_2 d = \int (m^7 + 1) \, \log_2 m \, \cos d = \log_2 m \, \cos d = 1$$

$$= \left(\frac{\omega^{7}}{m} + \omega\right) \log_{\infty} \omega = \int_{\infty}^{\infty} \left(\frac{\omega^{7}}{m} + 1\right) \cos \omega$$

$$= (\frac{\ddot{d}l_{m}}{r} + \ddot{d}l_{m}) + \frac{\ddot{d}l_{m}}{r} + \ddot{d}l_{m}) + =$$

الاستاذ حمزة ابو الفول

الملاذ في مهارات الرياضيات وحدة التكامـــل تدريبات مع الحل

مثال: جد اس لو س دس

$$\int m^{\circ} \log_{e} m^{\circ} \cos \frac{1}{7} \int \frac{1}{7} m^{7} \int \frac{1}{7} m^{7} \times \frac{m}{m} \cos \frac{1}{7} \cos \frac{1}{7} \sin \frac{1}{7} \sin \frac{1}{7} \sin \frac{1}{7} \cos \frac{1}{7} \sin \frac{1}{7} \cos \frac{1}{7} \cos$$

$$=\frac{1}{7}\omega^{7}\log^{3}-\sqrt{\frac{1}{7}}\omega^{6}\cos^{3}$$

$$=\frac{1}{7}m^{7}\log^{3}-\frac{1}{17}m^{7}+$$

مثال : جد
$$\sqrt{\frac{\eta_{1}}{\sigma}}$$
 دس مثال : جد

$$\frac{\sqrt{m}}{\sqrt{m}} cm = \int \frac{d^{2} c}{c} = \int \frac{d^{2$$

$$-\frac{7}{5}\frac{6}{6}\frac{\xi-1}{6}\sqrt{\frac{\pi}{\xi-1}}=$$

$$= \frac{-\eta}{3} \log_{10} \left| \circ - \circ \right| + =$$

$$=\frac{7}{2}\log_{10}\left(10^{-3}\right)+7$$

الاستاذ حمزة ابو الفول . VVYYDQDQ.W

الملاذ في مهارات الرياضيات وحدة التكامــل تدريبات مع الحل

توجيهي علمي

$$rac{\pi}{\gamma}=\frac{1}{\gamma}$$
 عندما س $=rac{\kappa}{\gamma}$ عندما س

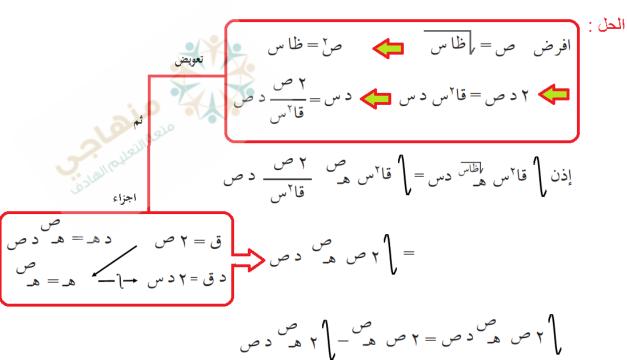
الحل:
$$\frac{com}{cm} = -$$
 جاس \times هـ جناس $\frac{\pi}{cm}$: $\frac{\pi}{cm}$ هـ جتا $\frac{\pi}{r}$ هـ جتا $\frac{\pi}{r}$ هـ جتا $\frac{\pi}{r}$ هـ $\frac{\pi}{r}$

مثال : اذا کان ص = س لوه
$$^{m^{7}}$$
 ، جد $\frac{com}{cm}$: اذا کان ص = $m \times m^{7} = m^{7}$ مثال : $m = m \times m^{7} = m^{7}$

مثال : جد
$$\int_{-\infty}^{1} w^{7} = w^{7+1} cw$$
 .

المحل : تكامل بالتعويض $w^{7} = w^{7} + 1$ $w^{7} = w^{7} + 1$

$$Y = ص = 1$$
 وعندما س $X = 0$ عندما س $X = 0$ عندما س


$$\int_{-\infty}^{\infty} w^{7} = \int_{-\infty}^{\infty} w^{7} = \int_{-\infty}^{\infty} \frac{1}{m} = \int_{-\infty}^{\infty}$$

الاستاذ حمزة ابو الفول * POPOTYVV.

الملاذ في مهارات الرياضيات وحدة التكامــل تدريبات مع الحل

مثال: جد هاس بدس

الحل: نفرض ص=أس+ب $c m = \frac{1}{5}$ $c m = \frac{1}{5}$

$$\int e^{i\omega^{+}} c\omega = \int e^{i\omega} \times \frac{c}{i}$$

$$= \int e^{i\omega} \times \frac{c}{i}$$

الملاذ في مهارات الرياضيات وحدة التكامـــل تدر بيات مع الحل

الاستاذ حمزة ابو الفول

مثال : جد
$$\int_{1}^{\infty} \frac{1}{m^{7} - 3m + 7}$$
 دس

$$\frac{(\Upsilon-m) + (\Upsilon-m)}{(\Upsilon-m)} = \frac{1}{(m-m)} + \frac{1}{m-m} = \frac{1}{m+m} = \frac{1}{m-1} = \frac{1}{m-1} = \frac{1}{m}$$

$$= \frac{1}{7} \log_{a} |w - 7| \int_{3}^{9} - \frac{1}{7} \log_{a} |w - 1| \int_{3}^{9}$$

$$= \frac{1}{3} \left[\log_{\alpha} 7 - \log_{\alpha} 1 \right] - \frac{1}{7} \left[\log_{\alpha} 3 - \log_{\alpha} 7 \right]$$

$$= \frac{1}{3} \left[\log_{\alpha} 7 - \log_{\alpha} 1 \right] - \frac{1}{7} \left[\log_{\alpha} 3 - \log_{\alpha} 7 \right]$$

$$= \frac{1}{3} \left[\log_{\alpha} 7 - \log_{\alpha} 1 \right] - \frac{1}{7} \left[\log_{\alpha} 3 - \log_{\alpha} 7 \right]$$

مثال : جد
$$\int \frac{3m+1}{m^2-m-7}$$
 دس

$$\frac{186}{186}$$

توجيهي علمي

الاستاذ حمزة ابو الفول ٣. ٩ ٥ ٩ ٥ ٩ ٢ ٧٧ ٢ . الملاذ في مهارات الرياضيات وحدة التكامـــل تدريبات مع الحــل

الملات في مهارات الرياضيات حمرة ابو الفول ۲۰ ۱۵، ۲۷۷۲۰

مثال : جد
$$\sqrt{\frac{m^2 - m}{m + 1}}$$
 دس

$$\frac{1}{1+\omega}$$
: $\int \frac{w^{2}-w}{w+1} cw = \int (w-1) cw + \int \frac{1}{w+1} cw$

$$= \int \frac{w^{7}}{7} - 7w + 7 \log_{e} w + 1 + ... + ...$$

رين النول النول 1500 و 1722 و 1930 و

مثال : جد
$$\int \frac{7m^{7}-m^{7}+7m}{m^{7}-7m-3}$$
 دس

7w + 0 +

الحل : درجة البسط اكبر من درجة المقام نجري القسمة الطويلة

$$\frac{(\xi - w) + (1 + w)^{\frac{1}{2}}}{(1 + w)(1 + w)} = \frac{v}{(1 + w)} + \frac{v}{(1 + w)} = \frac{v}{(1 + w)(1 + w)}$$

التكامل المطلوب =
$$m^7 + o$$
 m $+ \frac{172}{o}$ m $+ \frac{7}{o}$ m $+ \frac{7}{o}$ m $+ \frac{7}{o}$ دس

$$= w^{7} + ow + \frac{371}{o} \log_{a} \left| w - 3 \right| + \frac{7}{o} \log_{a} \left| w - 1 \right| + \infty$$

الإسكاني المرادي المر

جميع الفروع

الأستاذ: حمزة أبو الفول ٥٠٠٥،

الملاذ في مهارات الرياضيات الصف الثاني الثانوي التوجيهي

كورسات الملاذ في مهارات الرياضيات

كالمار السائع بالمال المالي السائح

ألحرو بِمُ الرَّاصِّارِ / يَوْلُمَارُ الْوَافِرُ الْمِلُولُ الْمُرَافِرُ الْمِلُولُ الْمِلُولُ الْمُلْكُ

١)الملاذ في الرياضيات للفرع العلمي / وحدة النهايات والاتصال

٢)الملاذ في الرياضيات للفرع العلمي / وحدة التفاضل

٣)الملاذ في الرياضيات للفرع العلمي / وحدة تطبيقات التفاضل

٤)الملاذ في الرياضيات للفرع العلمي / وحدة التكامل

)الملاذ في الرياضيات للفرع العلمي / وحدة القطوع المخروطية

٦)الملاذ في الرياضيات للفرع العلمي / اسئلة التدريبات والتمارين مع الحلول للمستوى الثالث

٧)الملاذ في الرياضيات للفرع العلمي / اسئلة التدريبات والتمارين مع الحلول للمستوى الرابع

٨)الملاذ في الرياضيات للفرع العلمي / اسئلة الوزارة من ٢٠٠٧ الى اخر دورة للمستوى الثالث

9)الملاذ في الرياضيات للفرع العلمي / اسئلة الوزارة من ٢٠٠٧ الى اخر دورة للمستوى الرابع

الحلاة في الريافيات / كورسات الغروع العشتركة

ر الرَّاوَلِينَ ، الرَّاوَالِ السَّالِينَ ، الرَّاوَالِ السَّالِينَ ، السَّالِي ، الرَّاوَالِ السَّالِي ، الرَّاوَالِ السَّالِي ، الرَّاوَالِ السَّالِي ، الرَّاوَالِ السَّالِي ، السَّالِي ، السَّالِي ، الرَّاوَالِ السَّالِي ، السَّلَّ ، السَّالِي ، السَّالِي ، السَّلْمُ ، السَّلَّ ، السَّالِي ، السَّلَّ ، السَّلْمُ ، السَّلَّ ، السَّلْمُ السَّلَّ ، السَّلَّ ، السَّلَّ ، السَّلَّ ، السَّلَّ ، السّلَّ ، السَّلَّ ، السَّلَّ ، السَّلَّ ، السَّلَّ ، السَّلَّ ، السَّلْمُ ، السَّلَّ ، السَّلْمُ ، السَّلْمُ السَّلَّ ، السَّلَّ ، السَّلَّ ، السَّلَّ السَّلَّ ، السَّلَّ السَّلْمُ السَّلَّ ، السَّلَّ ، السَّلَّ السَّلَّ السَّلَّ السَّلَّ ، السَّلْمُ السَّلْمُ السَّلْمُ السَّلَّ السَّلْمُ السَّلَّ السَّلَّ السَّلْمُ السَّل

١) الملاذ في الرياضيات للفروع المشتركة / المستوى الثالث

٢) الملاذ في الرياضيات للفروع المشتركة / المستوى الرابع

٣)الملاذ في الرياضيات للفروع المشتركة / اسئلة التدريبات والتمارين مع الحلول / للمستوى الثالث

٤) الملاذ في الرياضيات للفروع المشتركة / اسئلة التدريبات والتمارين مع الحلول / للمستوى الرابع

٥)الملاذ في الرياضيات للفروع المشتركة / اسئلة الوزارة من ٢٠٠٧ الى اخر دورة / للمستوى الثالث

٦)الملاذ في الرياضيات للفروع المشتركة / اسئلة الوزارة من ٢٠٠٧ الى اخر دورة / للمستوى الرابع

المارة في الرياضيات /كورسات الفرع المناعي

١)الملاذ في الرياضيات للفرع الصناعي / رياضيات اساسي

٢)الملاذ في الرياضيات للفرع الصناعي / رياضيات اساسي / اسئلة التدريبات والتمارين مع الحلول
 ٣)الملاذ في الرياضيات للفرع الصناعي / رياضيات اساسي / اسئلة الوزارة من ٢٠٠٧ الى اخر دورة

العلادُ في الرياضياتُ / علدُهاتُ واسئلةُ عتوقعة