بسم الله الرحمن الرحيم امتحان شهادة الدراسة الثانوية العامة لعام ٢٠٠٤ (الدورة الشتوية)

<u>د س</u> مدة الامتحان : ۳۰ ۲ التاريخ: ١٠ / ١ /٢٠٠٤

المبحث: الكيمياء

الفرع: العلمى

ملحوظة: أجب عن جميع الأسئلة الآتية وعددها (٥) علماً بأن عدد الصفحات (٢).

	-	الســـوال الأول: (١٢ علامه) _
⁰ E (فونت)	نصف تفاعل الاختزال	اعتماداً على الجدول المجاور الذي
٠,٧٤_	Cr³+ + 3e ⁻ → Cr	يبين جهود الاخترال المعيارية
٠,٣٤+	Cu ²⁺ + 2e ⁻ → Cu	لعدد من أنصياف التفاعلات أجب
٠,١٣_	Pb ²⁺ + 2e ⁻ → Pb	عما يأتي:
١,١٨-	Mn ²⁺ + 2e ⁻ → Mn	
1,77+	$MnO_{2(s)} + 4H^{+}_{(aq)} + 2e^{-} \rightarrow Mn^{2+}_{(aq)} + 2H_{2}O$	۱- حدد أقوى عامل مختزل

٢- حدد العنصرين اللذين يكونان خلية غلفانية لها أقل قيمة فولتية، ثم احسب قيمة °E للخلية.

٣- إذا كان التفاعل الأتي يحدث في خلية غلفانية:

نولت (1,1) + = (1 + 1) + (1 + 1) فولت (1,1) + 1 + (1 + 1) فولت (1,1) + 1 + (1 + 1) فولت (1,1) + 1 + (1 + 1) فولت (1,1) + (1 + 1)فاكتب معادلة نصف التفاعل الذي يحدث عند المصعد، ثم احسب قيمة °E له.

الســـوال الثاني: (٨ علامات)

١- إذا علمت أن:

انقل إلى دفتر إجابتك رقم الفقرة و الإجابة الصحيحة لكل فقرة من الفقرات الـ (٤) الآتية على الترتيب:

۴- E° فولت د ۲۰٫۳٤ فولت

 $Cu^{2+}_{(aq)} + 2e \rightarrow Cu_{(s)}$

°E = - ۱٫٦٦ فولت

 $AI^{3+}_{(aq)} + 3e \rightarrow AI_{(s)}$

فإن قيمة °E للخلية الغلفانية المكونة من القطبين AI, Cu تساوي: أ) ١,٣٢ فولت ج) +٢,٠٠٠ فولت حا د) +۲,۳۰ فولت

٢- المادة التي تسلك سلوكاً حمضياً وفق مفهوم لويس هي: د) *Ag ۳ NH₃ (۳ ب-) •OH

٣- أحد محاليل المواد الآتية (تركيز كل منها ١ مول / لتر) له أقل قيمة pH: NaHCO₃ (NaBr (ب ۳) NaHS Na₂CO₃ (

٤- المركب العضوى الذي لا يتأكسد بمحلول K2Cr2O7 في وسط حمضي هو: أ) حمض كربوكسيلي ب) كحول أولي د) كحول ثانوى ج) ألدهيد

الســـوال الثالث: (١٢ علامة) أ) ما عدد التأكسد لعنصر النتروجين في كل مما يأتي: (علامتان)

 NO_2^- , NH_4^+

ب) وازن معادلة التفاعل الآتي بطريقة نصف التفاعل (أيون - إلكترون) علماً بأنه يتم في وسط قاعدي.

CrO₂- + ClO- CrO₄²⁻ + Cl

<u>ـؤال الرابع: (١٨ علامة)</u>

أ) اعتماداً على الجدول المجاور الذي يبين قيم ثابت التأين (Kb) لعدد من القواعد الضعيفة (تركيز كل منها

صبغة القاعدة

NH₃

C₆H₅NH₂

CH₃NH₂

 K_b

9-1 · × 1,0

°-1. × 1, A

1:-1 · × 1, ·

£-1. × ٣, V

(۱۰ علامات)

(علامتان)

(۱۰ علامات) ٠,١ مول/لتر). أجب عما يأتي:

1- اكتب صيغة القاعدة الأقوى.

۲- اكتب معادلة تفاعل القاعدة (C_5H_5N) مع الماء، ثم حدد الزوجين المترافقين من الحمض والقاعدة في التفاعل.

٣- أى القواعد له أقل قيمة pH ?

٤- أكمل المعادلة الآتية:

 $C_6H_5NH_{2(aq)} + NH_4^+_{(aq)} \longrightarrow$ ب) إذا علمت أن Ka للحمض HOCl يساوي ٢٠٨ × ١٠- أوتركيزه (٢٠,٠ مول/لتر). (۸ علامات)

1- احسب [+H3O] في محلول الحمض.

٢- احسب عدد مولات الملح NaOCl التي يجب إضافتها إلى (٢٠٠ مل) من محلول الحمض لتصبح قيمة pH = ٧

٣- ما الأيون المشترك في المحلول الناتج بعد إضافة الملح؟

الســـوال الخامس: (١٨ علامة) اعتماداً على الجدول الآتي ، أجب عن الأسئلة التي تليه:

٣	4	0	
CH₃CH=CH₂	CH₃CH₂CI CH₃CH₂ – Ĉ– H		
O 7	٥	CH ₃ [£]	
C ₆ H ₅ – C-OCH ₃	CH₃CEC – H	CH ₃ – C – CH ₃	
		Br	

أولاً: اكتب صيغة المركب العضوى الرئيس الذي ينتج عند:

أ) إضافة مول من H₂O في وسط حمضى إلى المركب رقم (٣).

ب) تسخين المركب رقم (٤) مع KOH.

ج) تسخين المركب رقم (٦) بوجود محلول NaOH .

د) تفاعل المركب رقم (٢) مع -CN .

ثانياً : اكتب معادلات تمثل عملية تحضير المركب CH3CH2CHG مستخدماً المركبين رقم (١) (۲ علامات) ورقم (٢) ومستعيناً بأي مواد أخرى مناسبة.

ثالثاً: اكتب صيغة المركب العضوى الذي يتفاعل مع محلول تولينز.

(انتهت الأسئلة)

شبكة منهاجي التعليمية

الإجابات النموذجية لامتحان عام ٢٠٠٤ (الدورة الشتوية)

السوال الأول:

أ) ١- أقوى عامل مؤكسد: MnO2 ، أقوى عامل مختزل:

Mn - Cr - Y

 $H_2O + Ti \rightarrow TiO^{2+} + 2H^+ + 4e^- - 7$

جهد الخلية المعياري = جهد اختزال المهبط - جهد اختزال المصعد

+ ١,٢٣ = ٢,١١ - جهد اختزال المصعد

- جهد اختزال المصعد = ٢,١١ – ١,٢٣

جهد اختز ال المصعد = -۸۸، فولت

جهد التأكسد (جهد نصف تفاعل التأكسد) = +۸۸، فولت.

السوال الثاني:

٤	٣	۲)
Í	ŗ	7	ج

السؤال الثالث:

أ) عدد تأكسد النتروجين في الأيون ⁺ NH₄ = -٣

عدد تأكسد النتروجين في الأيون NO₂ = +٣

$$CrO_2^- \rightarrow CrO_4^{2-}$$
 $ClO^- \rightarrow Cl^-$

ب)

CIO⁻ → CI⁻

نصف تفاعل التأكسد $CrO_2^- + 2H_2O \rightarrow CrO_4^{2-} + 4H^+ + 3e^-$

المنتزال $CIO^- + 2H^+ + 2e^- \rightarrow CI^- + H_2O$

وبضرب نصف تفاعل التأكسد في (٢) ونصف تفاعل الاختزال في (٣) وجمع المعادلتين:

 $2CrO_2^- + 4H_2O \rightarrow 2CrO_4^{2-} + 8H^+ + 6e^-$

 $3CIO^{-} + 6H^{+} + 6e^{-} \rightarrow 3CI^{-} + 3H_{2}O$

 $2CrO_{2}^{-} + H_{2}O + 3ClO^{-} \rightarrow 3Cl^{-} + 2CrO_{4}^{2-} + 2H^{+}$

وبإضافة -20H إلى طرفي المعادلة:

 $2OH^{-} + 2CrO_{2}^{-} + H_{2}O + 3ClO^{-} \rightarrow 3Cl^{-} + 2CrO_{4}^{2-} + 2H^{+} + 2OH^{-}$

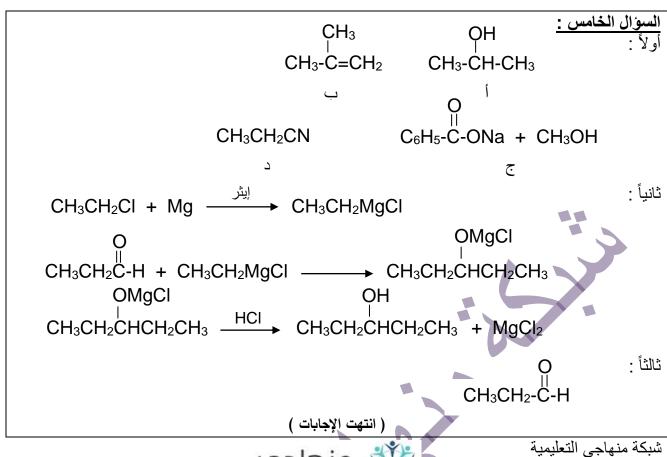
وبجمعي أيوني +2H و -2OH على شكل 2H₂O :

 $2OH^{-} + 2CrO_{2}^{-} + H_{2}O + 3ClO^{-} \rightarrow 3Cl^{-} + 2CrO_{4}^{2-} + 2H_{2}O^{-}$

وبحذف جزيئات الماء الزائدة:

 $2OH^{\text{-}} + 2CrO_{2}^{\text{-}} + \ 3ClO^{\text{-}} \rightarrow \ 3Cl^{\text{-}} + 2CrO_{4}^{2\text{-}} + \ H_{2}O$

. مول/لتر
$$\cdot$$
 × ۱ = [H₃O⁺] « ۲ = pH -۲
$$\frac{|OC|^{-}[H_3O^{+}]}{[HOCl]} = K_a$$


$$\frac{|V^{-}1 \cdot \times 1 \cdot [OCl^{-}]}{|V^{-}1 \cdot \times 1 \cdot (OCl^{-}]} = \Lambda^{-}1 \cdot \times 1 \cdot 1$$

.:. [NaOCI] = [OCI^{-۲} مول/لنر

عدد مولات الملح = ترکیزه × الحجم (لتر) =
$$V^{-1} \times V^{-1} \times V^{-1}$$
 مول .

٣- الأيون المشترك هو : OCl .

