بسم الله الرحمن الرحيم امتحان شهادة الدراسة الثانوية العامة لعام ٢٠٠١

<u>س</u> ۳

المبحث: الكيمياء

مدة الامتحان :

الفرع: العلمى

التاريخ: ٥/٧/١٠٠٢

المعلومات

[-A] = ۷ × ۱۰- مول/لتر

ملحوظة: أجب عن جميع الأسئلة الآتية وعددها (٦) علماً بأن عدد الصفحات (٣).

الســوال الأول: (٨ علامات)

اعتماداً على البيانات الواردة في الجدول الآتي للتفاعل: A + B → C

١. احسب رتبة التفاعل بالنسبة إلى المادة A ، والي المادة B .

٢. احسب قيمة ثابت سرعة التفاعل السابق (k) مع ذكر وحدته.

سرعة تكون C (مول/لتر . ثانية)	[B] (مول/لتر)	[A] (مول/لتر)	رقم التجربة
'-1 · × ٣, ٥ ·	٠,٢	٠,٢	١
"-1 · × ۲, ٨ ·	٠,٤	٠,٤	۲
Y-1 · × 1,1 Y	٠,٤	٠,٨	٣

صيغة

الحمض

HA

HB

HC

HD

السوال الثاني: (٢٤ علامة)

أ) لديك أربعة محاليل مائية لبعض الحموض الضعيفة بتراكيز متساوية (١,١ مول / لتر) لكل منها.

بالاعتماد على المعلومات الواردة عن كل حمض في الجدول المجاور، أجب عما يأتي: ﴿ لَمْ عَلَامَةً ﴾

١. احسب قيمة Ka لكل من الحمضين: الله ، HA ، HB

٢. أى القاعدتين المرافقتين أقوى أم أم ؟

٣. اكتب معادلة تفاعل الحمض HC(aq) مع القاعدة ، وفق تعریف برونستد ـ لوري، وحدد NH_{3(aq)} الزوجين المرافقين من الحمض والقاعدة في معادلة

التفاعل نفسه.

- ٤. ماذا يحدث لقيمة pH للحمض HB(aq) إذا خففنا التركيز إلى ٥٠,٠ مول/ لتر. (تقل، تبقى ثابتة، تزداد)؟
- ب) تم تحضير محلول من الحمض H2CO₃ والملح NaHCO₃ بالتركيز نفسه. (۱۰ علامات) فإذًا كان [+A3O] في المحلول = ٤ × ١٠٠ مول/لتر ، ويتأين الحمض في الماء كما في المعادلة الآتية:

$$H_2CO_{3(aq)} + H_2O_{(l)} \longrightarrow HCO_{3(aq)} + H_3O_{(aq)}^+$$

٤ = pH

'-۱· × ٤,٥ = K_a

 $^{\circ}$ -1 · × 1, $\varepsilon = K_a$

1. احسب قيمة ثابت التأين Ka للحمض H2CO3. ٢. اكتب صيغة الأيون المثترك.

٣. احسب قيمة النسبة: [الحمض] لتصبح قيمة pH للمحلول تساوي ٢,٤ وهي الفيمة المناسبة ليودي الدم وظيفته في الجسم. (علماً بأن لو ٤ = ٠,٦).

السوال الثالث: (١٢ علامة)

انقل إلى دفتر إجابتك رقم الفقرة والإجابة الصحيحة لكل فقرة من الفقرات ألـ (٦) الآتية على الترتيب:

ا - في التفاعل الآتي: $O_{2(g)} + O_{2(g)} + O_{2(g)}$ ، نجد أن معدل: $O_{2(g)} + O_{2(g)} + O_{2(g)}$

 N_2O_5 أ) سرعة تكون N_2O_5 نصف سرعة استهلاك

 N_2O_5 ب) سرعة تكون N_2O_5 سرعة استهلاك

 N_2O_5 صعف سرعة استهلاك O_5

 N_2O_5 د) سرعة تكون O_2 = نصف سرعة استهلاك

- $\mathsf{Mn}_{(s)} + \mathsf{Cd}^{2+}_{(aq)} o \mathsf{Mn}^{2+}_{(aq)} + \mathsf{Cd}_{(s)} + \mathsf{Cd}_{(s)}^{2+}$ فإن: التفاعل الآتي يحدث في إحدى الخلايا الغلفانية ب) كتلة القطب Mn تزداد أ) القطب Cd هو القطب السالب د) تركيز أيونات +Mn² يزداد ج) الإلكترونات تسري من القطب Cd إلى القطب n
 - ٣- أحد محاليل الأملاح الآتية له تأثير قاعدى:
 - NH₄NO₃ (و KCN (+ KNO₃ (KCI (7
 - \mathbf{K}_{b} 1 محلول مائي لقاعدة ضعيفة \mathbf{B} تركيزه (٠,٠١ مول/لتر) وكان الها \mathbf{K}_{b} لها (بالمول/لتر) يساوي: $[H_3O^+]$ فإن $[H_3O^+]$ في المحلول (بالمول/لتر) يساوي:
 - ج) ۱۰×۲۰° 7,-1 ·×1 ° (7 ٠-١٠ ×٤ (ب
 - ه- المركب الذي يعطى كيتوناً عند أكسدته بمحلول K2Cr2O7 المحمض هو:
- CH₃CH₂CH₂CHO(¹ CH₃CHOHCH₂CH₃ (₹ (CH₃)₃C-OH (+ CH₃CH₂CH₂CH₂OH (¹
- ٦- المركب الذي يتكون من الوحدة البنائية β غلوكوز هو:
 - ج) الأميلوز ب) السيليلوز أ) الغلايكوجين د) الأميلوبكتين

السيوال الرابع: (٢٠ علامة)

- أ) ما أثر العامل المساعد على كل مما يأتى: (۲ علامات)
 - ١- سرعة التفاعل الكيميائي. ٢- طاقة الوضع للمعقد المنشط. ٣- طاقة الوضع للمواد الناتجة.
- ١. وازن معادلة التفاعل بطريقة نصف التفاعل (أيون - الكترون).
- ٢. حدد العامل المؤكسد في التفاعل. ٣. ما عدد تأكسد العنصر Sb في المركب Sb₂O₅ ? (١٢ علامة)
- ج) مرّ تيار في خلية تحليل للماء باستخدام محلول حمض H2SO₄ وأقطاب بلاتين. اكتب معادلة المصعد. (علامتان)

السوال الخامس: (٢٢ علامات)

- أ) تم استخدام كل فلز من الفلزات الآتية: (G, D, C, B, A) مع محلول أحد أملاحه المائية بتركيز (١ مول/لتر) لعمل خلية غلفانية من النيكل (Ni) ومحلول أحد أملاحه المائية بتركز (١ مول / لتر). وكانت (۱۲ علامة) النتائج كما في الجدول المجاور.
- (E) اتجاه سريان الإلكترونات قطبا الخلية للخلية الغلفانية في الدارة الخارجية (فولت) إلى من Α + ٠٤٠ (A-Ni) Ni В Ni 1,00+ (B-Ni) ■Ni C ٠,٥٠+ (C-Ni) D Ni •, ٦•+ (D-Ni) G 1,90+ (G-Ni)
- ١. رتب الفلزات السابقة متضمنة النيكل حسب قوتها كعوامل مختزلة (من الأكثر نشاطاً إلى الأقل نشاطأ).
- ٢. هل يمكن حفظ محلول أحد أملاح الفلز C في وعاء من الفلز D؟
- ٣. احسب فرق الجهد (°E) للخلية الغلفانية التي يتكون قطباها من الفلزين (D , B) ثم حدد اتجاه سريان الإلكترونات في الدارة الخارجية للخلية الغلفانية

ب) مبتدئاً بالإيثاين (C₂H₂) بين بمعادلات كيفية تحضير المركب CH₃ – C – OCH₂CH3 ، مستعيناً ، K₂Cr₂O₇ / H⁺ , Ni_(s) , H₂O_(l) , HCl_(aq) , KOH_(aq) , Cl_{2(g)}, H_{2(g)} , PCC بالمواد الأتية: مصدر حرارة ، ضوع (۱۰ علامات)

السيوال السادس: (١٨ علامة) أك تتضمن الشبكة الآتية صبغاً كيميائية لعدد من المركبات العضوية:

(۸ علامات)

العصوية.	المرحبات	عدد من	حيميت	یہ صیعا	سبحه رود	تنظمی ا	('

C ₁₇ H ₃₅ COOH	CH ₃ CHNH ₂ COOH	C ₆ H ₁₂ O ₆
C ₁₇ H ₃₃ COOH	CH ₂ OH CHOH CH ₂ OH	C ₁₂ (H ₂ O) ₁₁

انقل إلى دفتر إجابتك من الشبكة الصيغة الكيميائية التي تمثل المركب العضوي الذي:

- ١- يتفاعل مع ٣مول من الحموض الدهنية مكوناً الدهن أو الزيت.
 - ٢- يعتبر السكر الرئيس في دم الإنسان.
 - ٣- يحتوي على رابطة غلايكوسيدية.
 - ٤- يكتسب خواص المواد الأيونية.

شبكة منهاجي التعليمية

الإجابات النموذجية لامتحان عام ٢٠٠١

السوال الأول:

١. من التجربتين (٢، ٣) تضاعف تركيز A مرتين وتضاعفت السرعة (٤) مرّات، فالتفاعل بالنسبة للمادة A هو من الرتبة الثانية.

ومن التجربتين (١، ٢):

$$\begin{pmatrix}
Y \\
\cdot . \xi
\end{pmatrix}
\begin{pmatrix}
\cdot . \xi \\
\cdot . Y
\end{pmatrix} = \frac{r_{-1} \cdot \times Y, \lambda}{r_{-1} \cdot \times Y, \delta}$$

$$\begin{pmatrix}
Y \\
\cdot . Y
\end{pmatrix}
\begin{pmatrix}
Y \\
Y
\end{pmatrix}
\begin{pmatrix}
Y \\
Y
\end{pmatrix}
\begin{pmatrix}
Y \\
Y
\end{pmatrix}
= \lambda$$

$$\begin{pmatrix}
Y \\
Y
\end{pmatrix}
= Y$$

 $^{1}[B]^{2}[A] k = سرعة التفاعل$

$$\frac{\text{uncas liss}}{1[B]^{2}[A]} = k$$

$$\frac{1}{[B]^{2}[A]} = k$$

$$\frac{1}{[B]^{2}[A]} = k$$

$$\frac{1}{[A]^{2}[A]} = k$$

السؤال الثانى: أ) ١ الحمض HA

$$HA + H_2O \longrightarrow H_3O^+ + A^-$$

$$[A^{-}] = [H_3O^{+}][A^{-}] = K_a$$

$$\frac{1}{1 \cdot 1 \cdot \times \xi} = \frac{1}{1 \cdot 1 \cdot 1 \cdot \times 1} = \frac{2[A^{-1}]}{[HA]} = K_a$$

$$HB + H_2O \longrightarrow H_3O^+ + B^-$$

مول/لتر
$$[H_3O^+] = [H_3O^+]$$
 $= [H_3O^+] = [H_3O^+]$ $= K_a$

$$^{\vee}$$
- $^{\vee}$ -

٢. ⁻D لأنها قاعدة مرافقة لحمض أضعف.

السؤال الثالث

٦	٥	٤	٣		١
ب	ج	ج	ب	4	7

<u>السؤال الرابع :</u> أ) ١- تزيد . ٢- تقل . ٣- تبقى ثابن

تأكسد
$$Sb_2S_3 \rightarrow Sb_2O_5 + S$$
 اختزال $NO_3^- \rightarrow NO$

$$Sb_2S_3 + 5H_2O \rightarrow Sb_2O_5 + 3S + 10H^+ + 10e^-$$

 $NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$

وبضرب نصف تفاعل التأكسد في (٣) ونصف تفاعل الاختزال في (١٠) وجمع المعادلتين الناتجتين:

$$3Sb_2S_3 + 15H_2O \rightarrow 3Sb_2O_5 + 9S + 30H^+ + 30e^-$$

 $10NO_3 + 40H^+ + 30e^- \rightarrow 10NO + 20H_2O$

$$3Sb_2S_3 + 10NO_3^- + 10H^+ \rightarrow 3Sb_2O_5 + 9S + 10NO + 5H_2O$$

. (°+) -
$$^{\circ}$$
 NO $_{3}$: ۲- العامل المؤكسد $^{\circ}$ 2H $_{2}$ O \rightarrow O $_{2}$ + 4H $^{+}$ + 4e $^{-}$

<u>وال الخامس:</u> B < D < Ni < C < G < A -۱ ۲- یمکن . ۳- °E _{خلیة} = ۰٫۲۰ - ۰٫۲۰ = ۰٫۶۰ فولت . CHECH + $2H_2 \xrightarrow{\text{Ni}} \text{CH}_3\text{CH}_3$ CH₃CH₃ + Cl₂ → CH₃CH₂CI + HCl CH₃CH₂CI + KOH → CH₃CH₂OH + KCI $CH_3CH_2OH \xrightarrow{PCC} CH_3CHO \xrightarrow{K_2Cr_2O_7} CH_3COOH$ $CH_3COOH + CH_3CH_2OH \xrightarrow{H^+} CH_3COOCH_2CH_3 + H_2O$ CH₂OH CHOH CH₂OH - \ C₆H₁₂O₆ - ۲ $C_{12}(H_2O)_{11}$ -CH3CHNH2COOH - 5 CH₃CH₂OCH₃ 1 (ب $CH_3NH_3^+$ 3 CH₃CH-CH₃ ÇH₃ C_2H_5 - \dot{C} - CH_3 5 CH₃C=CH₂ 4 ĊH₃ بكة منهاجي التعليمية